Skip to main content
Log in

Synthesis of nanocrystalline CeO2–Y2O3 powders by a nitrate–glycine gel-combustion process

  • Rapid Communications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the synthesis of CeO2–10 mol% Y2O3 powders by a nitrate–glycine gel-combustion route was investigated. Special attention was given to the influence of the glycine/metal ratio and calcination temperature on powder morphology. In contrast to the usual reported behavior, the best powder properties (crystallite size, 4.5–7 nm; specific surface area; 25–40 m2/g) were obtained for slow combustion processes with glycine/metal ratios of 1.5–2, whereas energetic reactions resulted in large crystallite and particle sizes. Furthermore, it was found that the crystallite size increases considerably even at moderate calcination temperatures (350–550 °C), showing the high reactivity of these nanopowders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Eguchi, T. Seetoguchi, T. Inoue, and H. Arai, Solid State Ionics 52, 165 (1992).

    Article  CAS  Google Scholar 

  2. D.L. Maricle, T.E. Swarr, and S. Karavolis, Solid State Ionics 52, 173 (1992).

    Article  CAS  Google Scholar 

  3. H. Inaba and H. Togawa, Solid State Ionics 83, 1 (1996).

    Article  CAS  Google Scholar 

  4. C. Milliken, S. Guruswamy, and A. Khandkar, J. Electrochem. Soc. 146, 872 (1999).

    Article  CAS  Google Scholar 

  5. E. Perry Murray, T. Sai, and S.A. Barnett, Nature 400, 649 (1999).

    Article  CAS  Google Scholar 

  6. S. Park, J.M. Vohs, and R.J. Gorte, Nature 404, 265 (2000).

    Article  CAS  Google Scholar 

  7. J. Van herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M. Dokiya, J. Am. Ceram. Soc. 80, 933 (1997).

    Article  Google Scholar 

  8. K. Higashi, K. Sonoda, H. Ono, S. Sameshima, and Y. Hirata, J. Mater. Res. 14, 957 (1999).

    Article  CAS  Google Scholar 

  9. L. Li, X. Lin, G. Li, and H. Inomata, J. Mater. Res. 16, 3207 (2001).

    Article  CAS  Google Scholar 

  10. M. Hirano and E. Kato, J. Am. Ceram. Soc. 82, 786 (1999).

    Article  CAS  Google Scholar 

  11. P. Shuk and M. Greenblatt, Solid State Ionics 116, 217 (1999).

    Article  CAS  Google Scholar 

  12. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, and G.J. Exarthos, Mater. Lett. 10, 6 (1990).

    Article  CAS  Google Scholar 

  13. L.R. Pederson, G.D. Maupin, W.J. Weber, D.J. McReady, and R.W. Stephens, Mater. Lett. 10, 437 (1991).

    Article  CAS  Google Scholar 

  14. J.L. Bates, L.A. Chick, and W.J. Weber, Solid State Ionics 52, 235 (1992).

    Article  CAS  Google Scholar 

  15. H.C. Shin, K.R. Lee, S. Park, C.H. Jung, and S.J. Kim, Jpn. J. Appl. Phys. 35, L996 (1996).

    Article  CAS  Google Scholar 

  16. D.G. Lamas, G.E. Lascalea, and N.E. Walsöe de Reca, J. Eur. Ceram. Soc. 18, 1217 (1998).

    Article  CAS  Google Scholar 

  17. Y-S. Chou, J.W. Stevenson, T.R. Armstrong, J.S. Hardy, K. Hasinska, and L.R. Pederson, J. Mater. Res. 15, 1505 (2000).

    Article  CAS  Google Scholar 

  18. Y-S. Chou, K. Kerstetter, L.R. Pederson, and R.E. Williford, J. Mater. Res. 16, 3545 (2001).

    Article  CAS  Google Scholar 

  19. S-J. Kim, W. Lee, W-J. Lee, S.D. Park, J.S. Song, and E.G. Lee, J. Mater. Res. 16, 3621 (2001).

    Article  CAS  Google Scholar 

  20. D.G. Lamas, R.E. Juárez, G.E. Lascalea, and N.E. Walsöe de Reca, J. Mater. Sci. Lett. 20, 1447 (2001).

    Article  CAS  Google Scholar 

  21. J. Schäfer, W. Sigmund, S. Roy, and F. Aldinger, J. Mater. Res. 12, 2518 (1997).

    Article  Google Scholar 

  22. D.G. Lamas, R.E. Juárez, A. Caneiro, and N.E. Walsöe de Reca, NanoStruct. Mater. 10, 1199 (1998).

    Article  CAS  Google Scholar 

  23. L.B. Fraigi, D.G. Lamas, and N.E. Walsöe de Reca, Nanostruct. Mater. 11, 311 (1999).

    Article  CAS  Google Scholar 

  24. S. Roy, W. Sigmund, and F. Aldinger, J. Mater. Res. 14, 1524 (1999).

    Article  CAS  Google Scholar 

  25. R.E. Juárez, D.G. Lamas, G.E. Lascalea, and N.E. Walsöe de Reca, J. Eur. Ceram. Soc. 20, 133 (2000).

    Article  Google Scholar 

  26. H.K. Varma, P. Mukundan, K.G.K. Warrier, and A.D. Domodaran, J. Mater. Sci. Lett. 9, 377 (1990).

    Article  CAS  Google Scholar 

  27. M.M.A. Sekar, S.S. Manoharan, and K.C. Patil, J. Mater. Sci. Lett. 9, 1205 (1990).

    Article  CAS  Google Scholar 

  28. E. Zhou, S. Bhaduri, and S.B. Bhaduri, Ceram. Eng. Sci. Proc. 18, 653 (1997).

    Article  CAS  Google Scholar 

  29. S. Badhuri and S.B. Bhaduri, Nanostruct. Mater. 8, 755 (1997).

    Article  Google Scholar 

  30. H. Klug and L. Alexander, in X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley, New York, 1974), pp. 618, 708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianchetti, M.F., Juárez, R.E., Lamas, D.G. et al. Synthesis of nanocrystalline CeO2–Y2O3 powders by a nitrate–glycine gel-combustion process. Journal of Materials Research 17, 2185–2188 (2002). https://doi.org/10.1557/JMR.2002.0320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0320

Navigation