Skip to main content
Log in

Multiphase microstructure evolution model including dislocation plasticity

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present the recent extensions of our stochastic microstructure evolution model including multiphase domain evolution and dislocation plasticity. The model was implemented by means of numerical simulations based on the velocity Monte Carlo algorithm. It describes the evolution of a two-dimensional microstructure by tracking the motion of triple junctions, i.e., the vertices where three grain boundaries (GBs) meet. GBs can be modeled as straight, curved, or discretized segments; the misorientation dependence of both grain-boundary energies and mobilities can be included to represent different textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Needleman and J.R. Rice, Acta Met. 28, 1315 (1980).

    Article  CAS  Google Scholar 

  2. A.C.F. Cocks and S.P. Gill, Acta Mater. 44, 4765 and 4777 (1996).

    Article  Google Scholar 

  3. A.C.F. Cocks and S.P. Gill, in Advances in Applied Mechanics, (Academic Press, New York, 1999), Vol. 36, p. 81.

    Google Scholar 

  4. F. Cleri, Physica A 282, 339 (2000).

    Article  Google Scholar 

  5. D. Moldovan, D. Wolf, and S.R. Phillpot, Acta Mater. 49, 3521 (2001).

    Article  CAS  Google Scholar 

  6. W.T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).

    Article  CAS  Google Scholar 

  7. F.J. Humpreys, Scripta Met. Mat. 27, 1557 (1992).

    Article  Google Scholar 

  8. F.J. Humpreys, Acta Mat. 45, 4231 (1997); Y. Huang and F.J. Humphreys, Acta Mat. 48, 2017 (2000).

    Article  Google Scholar 

  9. M.A. Miodownik and E.A. Holm, in Recrystallization and Grain Growth, edited by G. Gottstein and D.A. Molodov (Springer-Verlag, Berlin, 2001), p. 309.

    Google Scholar 

  10. A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Phys. Rev. B 63, 184102 (2001).

    Article  Google Scholar 

  11. L. Brambilla, L. Colombo, V. Rosato, and F. Cleri, Appl. Phys. Lett. 77, 2337 (2000).

    Article  CAS  Google Scholar 

  12. D.A. Molodov, in Recrystallization and Grain Growth, edited by G. Gottstein and D.A. Molodov (Springer-Verlag, Berlin, 2001), p. 21.

    Google Scholar 

  13. D.T. Wu, in Solid State Physics, Vol. 50, (Academic Press, New York, 1989), p. 37.

    Google Scholar 

  14. A.N. Kolmogorov, Izv. Akad. Nauk. USSR Ser-Matemat. 1, 355 (1937); W.A. Johnson and R.F. Mehl, Trans. Metall. Soc. AIME 135, 416 (1939); M. Avrami, J. Chem. Phys. 7, 1103 (1939).

    Google Scholar 

  15. P. Haasen, in Physical Metallurgy, (Cambridge University Press, Cambridge, 1978), p. 271.

    Google Scholar 

  16. R. Sedlácek, J. Kratochvíl, and W. Blum, Phys. Status Solidi A 186, 1 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleri, F., D’Agostino, G. Multiphase microstructure evolution model including dislocation plasticity. Journal of Materials Research 17, 1932–1940 (2002). https://doi.org/10.1557/JMR.2002.0286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0286

Navigation