Skip to main content
Log in

Solid-state 27Al Nuclear Magnetic Resonance Investigation of Plasma-facilitated NOx Reduction Catalysts

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aluminum coordination distribution for alumina catalysts supported on mesoporous silica was examined. It was shown that aluminum coordination correlates to activity of the catalysts for plasma-enhanced, selective catalytic reduction of NOx with propene. Catalysts were prepared by incorporating aluminum onto the surface of a mesoporous silica support via three different post-synthesis routes to produce varying aluminum coordination. Aluminum trichloride, sodium aluminate, and aluminum isopropoxide precursors were examined. High-resolution, solid state 27Al nuclear magnetic resonance was used to determine aluminum coordination distributions for the resulting catalysts. Unsaturated aluminum sites (i.e., structural defects) correlated with increased activity at high temperatures while tetrahedrally-coordinated aluminum or BrØnsted acid sites correlated with activity at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kawabata, H. Yoshimatsu, K. Fujiwara, T. Yabuki, A. Osaka, and Y. Miura, J. Mater. Sci. 34, 2529 (1999).

    Article  CAS  Google Scholar 

  2. M. Iwamoto and H. Yahiro, Catal. Today 22, 5 (1994).

    Article  CAS  Google Scholar 

  3. H. Hamada, Catal. Today 22, 21 (1994).

    Article  CAS  Google Scholar 

  4. E.A. Efthimiadis, A.A. Lappas, D.K. Iatrides, and I.A. Vasalos, Ind. Eng. Chem. Res. 40, 515 (2001).

    Article  CAS  Google Scholar 

  5. A.J. Sweeney and Y.A. Liu, Ind. Eng. Chem. Res. 40, 2618 (2001).

    Article  CAS  Google Scholar 

  6. C. Márquez-Alvarez, I. Rodríguez-Ramos, A. Guerrero-Ruiz, G.L. Haller, and M. Fernández-García, J. Am. Chem. Soc. 119, 2905 (1997).

    Article  Google Scholar 

  7. G.R. Bamwenda, A. Obuchi, A. Ogata, J. Oi, S. Kushiyama, H. Yagita, and K. Mizuno, Stud. Surf. Sci. Catal. V–121, 263 (1998–1999).

    Google Scholar 

  8. P.W. Park, K.A. Koshkarian, and M.J. Readey, Proc. DEER Workshop, Castine, Maine, Office of Heavy Vehicle Technology, U.S. Department of Energy, July 1999, p. V-29.

  9. T. Maunula, Y. Kintaichi, M. Haneda, and H. Hamada, Catal. Lett. 61, 121 (1999).

    Article  CAS  Google Scholar 

  10. K. Shimizu, J. Shibata, H. Yoshihda, A. Satsuma, and T. Hattori, Appl. Catal. B 30, 151 (2001).

    Article  CAS  Google Scholar 

  11. F.C. Meunier, R. Ukropec, C. Stapleton, and J.R.H. Ross, Appl. Catal. B 30, 163 (2001).

    Article  CAS  Google Scholar 

  12. C.R. McLarnon and B.M. Penetrante, SAE Paper 982433 (1998).

  13. Z. Luan, M. Hartmann, D. Zhao, W. Zhou, and L. Kevan, Chem. Mater. 11, 1621 (1999).

    Article  CAS  Google Scholar 

  14. P. Iengo, M. Di Serio, A. Serrentino, V. Solinas, and E. Santacesaria, Appl. Catal. A 167, 85 (1998).

    Article  CAS  Google Scholar 

  15. H. Kosslick, G. Lischke, B. Parlitz, W. Storek, and R. Fricke, Appl. Catal. A 184, 49 (1999).

    Article  CAS  Google Scholar 

  16. A. Corma, V. Fornés, M.T. Navarro, and J. Pérez-Pariente, J. Cata. 148, 569 (1994).

    Article  CAS  Google Scholar 

  17. V. Luca, D.J. MacLachlan, R. Bramley, and K. Morgan, J. Phys. Chem. 100, 1793 (1996).

    Article  CAS  Google Scholar 

  18. C-Y. Chen, H-X. Li, and M.E. Davis, Microporous Mater. 2, 17 (1993).

    Article  Google Scholar 

  19. R. Schmidt, D. Akporiaye, M. Stöcker, and O.H. Ellestad, J. Chem. Soc., Chem. Commun. 12, 1493 (1994).

    Article  Google Scholar 

  20. J. Liu, A.Y. Kim, J.W. Virden, and B.C. Bunker, Langmuir, 11, 689 (1995).

    Article  CAS  Google Scholar 

  21. K.G. Rappé, C.L. Aardahl, C.F. Habeger, D.N. Tran, M.A. Delgado, L-Q. Wang, P.W. Park, G.W. Tomlins, and M.L. Balmer, SAE 2001 Conference paper.

  22. L.A. Rosenthal and D.A. Davis, Corona Discharge for Surface Treatment, IEEE Trans. Ind. Appl. I 5, 328 (1975).

    Article  Google Scholar 

  23. Z. Luan, C-F. Cheng, H. He, and J. Klinowski, J. Phys. Chem. 99, 10590 (1995).

    Article  CAS  Google Scholar 

  24. R. Ryoo, S. Jun, J.M. Kim, and M.J. Kim, Chem. Commun. 22, 2225 (1997).

    Article  Google Scholar 

  25. R. Mokaya and W. Jones, Chem. Commun. 21, 2185 (1997).

    Article  Google Scholar 

  26. H. Hamdan, S. Endun, H. He, M.N.M. Muhid, and J. Klinowski, J. Chem. Soc. Faraday Trans. 92, 2311 (1996).

    Article  CAS  Google Scholar 

  27. J.A. Wang, X. Bokhimi, O. Novaro, T. Lopez, F. Tzompantzi, R. Gomez, J. Navarrete, M.E. Lianos, and E. López-Salinas, J. Mol. Catal. A 137, 239 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LQ., Aardahl, C.L., Rappé, K.G. et al. Solid-state 27Al Nuclear Magnetic Resonance Investigation of Plasma-facilitated NOx Reduction Catalysts. Journal of Materials Research 17, 18 (2002). https://doi.org/10.1557/JMR.2002.0272

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.2002.0272

Navigation