Skip to main content
Log in

Mechanisms of the AlCl3 Modification of Siliceous Microporous and Mesoporous Catalysts Investigated by Multi-Nuclear Solid-State NMR

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Solid-state NMR spectroscopy was utilized for investigating the post-synthetic formation of surface acid sites via AlCl3 modification of dealuminated zeolite Y (DeaY) and siliceous mesoporous SBA-15 and subsequent thermal treatment. Upon calcination at 723 K, aluminum atoms introduced by the AlCl3 modification coordinate at Q2 (Si(2Si,2OH)) and Q3 (Si(3Si,1OH)) sites and form tetrahedrally coordinated (AlIV) framework aluminum species. Most of the spectroscopically observed pentacoordinated (AlV) and octahedrally coordinated (AlVI) aluminum atoms are extra-framework species, partially acting as Lewis acid sites (LAC). The aluminum coordination at the framework is accompanied by the formation of Brønsted acidic SiOH groups with weak acid strength. The weak Brønsted acidity of these SiOH groups is explained by neighboring framework aluminum atoms with strongly disturbed tetrahedral oxygen coordination. For zeolite DeaY, in addition to the aluminum incorporation into silanol nests, also the aluminum incorporation via surface reactions of AlCl3 with the intact SiO2 framework occurs. In the case of mesoporous SBA-15, with a fivefold higher density of SiOH groups of the parent material compared with that of the parent zeolite DeaY, the aluminum incorporation into silanol nests is the dominating mechanism. By solid-state NMR spectroscopy of the dehydrated samples loaded with probe molecules, significantly larger densities (factor of 3–8) of LAC compared with those of Brønsted acid sites were determined for the AlCl3-modified and calcined zeolite DeaY and mesoporous SBA-15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1
Fig. 13
Fig. 14
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Kerr GT (1969) Chemistry of crystalline aluminosilicates. VI. Preparation and properties of ultrastable hydrogen zeolite Y. J Phys Chem 73:2780–2782

    Article  CAS  Google Scholar 

  2. Yoshida A, Nakamoto H, Okanishi K et al (1982) Preparation and properties of dealuminated Y type zeolite. Bull Chem Soc Jpn 55:581–586

    Article  CAS  Google Scholar 

  3. Barrer RM, Makki MB (1964) Molecular sieve sorbents from clinoptilolite. Can J Chem 42:1481–1487

    Article  CAS  Google Scholar 

  4. Debras G, Nagy JB, Gabelica Z et al (1983) Determination of silicon-aluminium orderings in mordenite and its aluminium deficient forms using high-resolution magic-angle-spinning 29Si-NMR. Chem Lett 12:199–202

    Article  Google Scholar 

  5. Springuel-Huet MA, Fraissard JP (1992) A 129Xe N.M.R. study of dealuminated mordenites. Zeolites 12:841–845

    Article  CAS  Google Scholar 

  6. O’Donovan AW, O’Connor CT, Koch KR (1995) Effect of acid and steam treatment of Na- and H-mordenite on their structural, acidic and catalytic properties. Microporous Mater 5:185–202

    Article  Google Scholar 

  7. Apelian MR, Fung AS, Kennedy GJ et al (1996) Dealumination of zeolite β via dicarboxylic acid treatment. J Phys Chem 100:16577–16583

    Article  CAS  Google Scholar 

  8. Corma A, García H (2002) Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems. Chem Rev 102:3837–3892

    Article  CAS  Google Scholar 

  9. Román-Leshkov Y, Davis ME (2011) Activation of carbonyl-containing molecules with solid Lewis acids in aqueous media. ACS Catal 1:1566–1580

    Article  Google Scholar 

  10. Moliner M (2014) State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes. Dalton Trans 43:4197–4208

    Article  CAS  Google Scholar 

  11. Corma A, Nemeth LT, Renz M et al (2001) Sn-zeolite Beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations. Nature 412:423–425

    Article  CAS  Google Scholar 

  12. Pacheco JJ, Davis ME (2014) Synthesis of terephthalic acid via Diels–Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proc Natl Acad Sci USA 111:8363–8367

    Article  CAS  Google Scholar 

  13. Tang B, Dai W, Wu G et al (2014) Improved postsynthesis strategy to Sn-Beta zeolites as Lewis acid catalysts for the ring-opening hydration of epoxides. ACS Catal 4:2801–2810

    Article  CAS  Google Scholar 

  14. Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602–605

    Article  CAS  Google Scholar 

  15. Moliner M, Roman-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci USA 107:6164–6168

    Article  CAS  Google Scholar 

  16. Cho HJ, Dornath P, Fan W (2014) Synthesis of hierarchical Sn-MFI as Lewis acid catalysts for isomerization of cellulosic sugars. ACS Catal 4:2029–2037

    Article  CAS  Google Scholar 

  17. Dai W, Wang C, Tang B et al (2016) Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides. ACS Catal 6:2955–2964

    Article  CAS  Google Scholar 

  18. Tang B, Dai W, Sun X et al (2015) Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chem 17:1744–1755

    Article  CAS  Google Scholar 

  19. Dessau RM, Kerr GT (1984) Aluminum incorporation into high silica zeolites. Zeolites 4:315–318

    Article  CAS  Google Scholar 

  20. Shilina MI, Vasilevskii GY, Rostovshchikova TN et al (2015) Unusual coordination state of cobalt ions in zeolites modified by aluminum chloride. Dalton Trans 44:13282–13293

    Article  CAS  Google Scholar 

  21. Kühl GH (1999) In: Weitkamp J, Puppe L (eds) Catalysis and zeolites: fundamentals and applications. Springer, Berlin, pp 161–163

    Google Scholar 

  22. Anderson MW, Klinowski J, Xinsheng L (1984) Alumination of highly siliceous zeolites. J Chem Soc Chem Commun 23:1596–1597

    Article  Google Scholar 

  23. Boroujeni KP (2010) Silica gel supported AlCl3 catalyzed Friedel-Crafts acylation of aromatic compounds. Chin Chem Lett 21:1395–1398

    Article  CAS  Google Scholar 

  24. Wu Y, Tian F, He M et al (2011) Isomerization of α-pinene over immobilized AlCl3 catalysts. Chin J Catal 32:1138–1142

    Article  CAS  Google Scholar 

  25. Xu M, Arnold A, Buchholz A et al (2002) Low-temperature modification of mesoporous MCM-41 material with sublimated aluminum chloride in vacuum. J Phys Chem B 106:12140–12143

    Article  CAS  Google Scholar 

  26. Luo M, Wang Q, Li G et al (2014) Enhancing tetralin hydrogenation activity and sulphur-tolerance of Pt/MCM-41 catalyst with Al(NO3)3, AlCl3 and Al(CH3)3. Catal Sci Technol 4:2081–2090

    Article  CAS  Google Scholar 

  27. Sumiya S, Oumi Y, Uozumi T et al (2001) Characterization of AlSBA-15 prepared by post-synthesis alumination with trimethylaluminium. J Mater Chem 11:1111–1115

    Article  CAS  Google Scholar 

  28. Zhai S-R, Wei L, Qu F-Z et al (2006) Comparative evaluation of steam stability and catalytic properties of four common aluminosilicate mesostructures prepared by post-grafting method. J Chinese Chemical Soc 53:1053–1058

    Article  CAS  Google Scholar 

  29. Hunger M (1997) Brønsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy. Catalysis Reviews 39:345–393

    Article  CAS  Google Scholar 

  30. Hunger M (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd Ed. Wiley, Weinheim, pp 1163–1178

    Google Scholar 

  31. Hunger M (2009) In: Chester AW, Derouane EG (eds) Zeolite characterization and catalysis—a tutorial. Springer, Berlin, pp 65–106

    Google Scholar 

  32. Jiang Y, Huang J, Dai W et al (2011) Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts. Solid State Nucl Magn Reson 39:116–141

    Article  CAS  Google Scholar 

  33. Haw JF, Nicholas JB, Xu T et al (1996) Physical organic chemistry of solid acids: lessons from in situ NMR and theoretical chemistry. Acc Chem Res 29:259–267

    Article  CAS  Google Scholar 

  34. Fang H, Zheng A, Chu Y et al (2010)) 13C chemical shift of adsorbed acetone for measuring the acid strength of solid acids: a theoretical calculation study. J Phys Chem C 114:12711–12718

    Article  CAS  Google Scholar 

  35. Filek U, Bressel A, Sulikowski B et al (2008) Structural stability and Brønsted acidity of thermally treated AlPW12O40 in comparison with H3PW12O40. J Phys Chem C 112:19470–19476

    Article  CAS  Google Scholar 

  36. Yang J, Janik MJ, Ma D et al (2005) Location, acid strength, and mobility of the acidic protons in Keggin 12-H3PW12O40: a combined solid-state NMR spectroscopy and DFT quantum chemical calculation study. J Am Chem Soc 127:18274–18280

    Article  CAS  Google Scholar 

  37. Li S, Zheng A, Su Y et al (2007) Bronsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study. J Am Chem Soc 129:11161–11171

    Article  CAS  Google Scholar 

  38. Li S, Huang S-J, Shen W et al (2008) Probing the spatial proximities among acid sites in dealuminated H-Y zeolite by solid-state NMR spectroscopy. J Phys Chem C 112:14486–14494

    Article  CAS  Google Scholar 

  39. Biaglow AI, Gorte RJ, White D (1994) 13C NMR studies of acetone in dealuminated faujasites: a probe for nonframework alumina. J Catal 150:221–224

    Article  CAS  Google Scholar 

  40. Wang Z, Jiang Y, Hunger M et al (2014) Catalytic performance of Brønsted and Lewis acid sites in phenylglyoxal conversion on flame-derived silica–zirconia. ChemCatChem 6:2970–2975

    Article  CAS  Google Scholar 

  41. Lang S, Benz M, Obenaus U et al (2016) Novel approach for the characterization of Lewis acidic solid catalysts by solid-state NMR spectroscopy. ChemCatChem 8:2031–2036

    Article  CAS  Google Scholar 

  42. Zheng A, Huang S-J, Liu S-B et al (2011) Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules. Phys Chem Chem Phys 13:14889–14901

    Article  CAS  Google Scholar 

  43. Sutovich KJ, Peters AW, Rakiewicz EF et al (1999) Simultaneous quantification of Brønsted- and Lewis-acid sites in a USY zeolite. J Catal 183:155–158

    Article  CAS  Google Scholar 

  44. Kao H-M, Yu C-Y, Yeh M-C (2002) Detection of the inhomogeneity of Brønsted acidity in H-mordenite and H-β zeolites: a comparative NMR study using trimethylphosphine and trimethylphosphine oxide as 31P NMR probes. Micropor Mesopor Mater 53:1–12

    Article  CAS  Google Scholar 

  45. Karra MD, Sutovich KJ, Mueller KT (2002) NMR characterization of Bronsted acid sites in faujasitic zeolites with use of perdeuterated trimethylphosphine oxide. J Am Chem Soc 124:902–903

    Article  CAS  Google Scholar 

  46. Obenaus U, Dyballa M, Lang S et al (2015) Generation and properties of Brønsted acid sites in bifunctional Rh-, Ir-, Pd-, and Pt-containing zeolites Y investigated by solid-state NMR spectroscopy. J Phys Chem C 119:15254–15262

    Article  CAS  Google Scholar 

  47. Huang S-J, Yang C-Y, Zheng A et al (2011) New insights into Keggin-type 12-tungstophosphoric acid from 31P MAS NMR analysis of absorbed trimethylphosphine oxide and DFT calculations. Chem Asian J 6:137–148

    Article  CAS  Google Scholar 

  48. Lunsford JH, Rothwell WP, Shen W (1985) Acid sites in zeolite Y: a solid-state NMR and infrared study using trimethylphosphine as a probe molecule. J Am Chem Soc 107:1540–1547

    Article  CAS  Google Scholar 

  49. Hayashi S, Jimura K, Kojima N (2014) Adsorption of trimethylphosphine oxide on silicalite studied by solid-state NMR. Bull Chem Soc Jpn 87:69–75

    Article  CAS  Google Scholar 

  50. Breck DW (1974) Zeolite molecular sieves. Krieger Publishing Company, Malabar, p 460–636

    Google Scholar 

  51. Hunger B, Hoffmann J, Heitzsch O et al (1990) Temperature-programmed desorption (TPD) of ammonia from HZSM-5 zeolites. J Therm Anal 36:1379–1391

    Article  CAS  Google Scholar 

  52. Niwa M, Katada N (2013) New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review. Chem Rec 13:432–455

    Article  CAS  Google Scholar 

  53. Yin F, Blumenfeld AL, Gruver V et al (1997) NH3 as a probe molecule for NMR and IR study of zeolite catalyst acidity. J Phys Chem B 101:1824–1830

    Article  CAS  Google Scholar 

  54. Zhao D, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  CAS  Google Scholar 

  55. Treacy MMJ, Higgins JB (2007) Collection of simulated XRD powder patterns for zeolites, 5th Ed. Elsevier, Oxford, p 174

    Book  Google Scholar 

  56. Černý Z, Macháček J, Fusek J et al (2000) 27Al NMR studies of the hydrolysis of aluminium(III)chloride in non-aqueous media. Inorg Chim Acta 300–302:556–564

    Google Scholar 

  57. Jiao J, Kanellopoulos J, Wang W et al (2005) Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T. Phys Chem Chem Phys 7:3221–3226

    Article  CAS  Google Scholar 

  58. Huang J, Jiang Y, Reddy Marthala VR et al (2008) Characterization and acidic properties of aluminum-exchanged zeolites X and Y. J Phys Chem C 112:3811–3818

    Article  CAS  Google Scholar 

  59. Thomas JM, Klinowski J, Anderson MW (1983) On the similarity of the high-resolution solid-state 29Si and 27Al spectra of silicalite and dealuminated zeolite ZSM-5. Chem Lett:1555–1556

  60. Klinowski J (1991) Solid-state NMR studies of molecular sieve catalysts. Chem Rev 91:1459–1479

    Article  CAS  Google Scholar 

  61. Engelhardt G, Michel D (1987) High resolution solid state NMR of silicates and zeolites. Wiley, Chichester, p 149–156

    Google Scholar 

  62. Pursch M, Sander LC, Albert K (1999) Peer reviewed: understanding reversed-phase LC with solid-state NMR. Anal Chem 71:733A–741A

    Article  CAS  Google Scholar 

  63. Brunner E, Sternberg U (1998) Solid-state NMR investigations on the nature of hydrogen bonds. Prog Nucl Magn Reson Spectrosc 32:21–57

    Article  CAS  Google Scholar 

  64. Huang J, van Vegten N, Jiang Y et al (2010) Increasing the Bronsted acidity of flame-derived silica/alumina up to zeolitic strength. Angew Chem Int Ed Engl 49:7776–7781

    Article  CAS  Google Scholar 

  65. Huang J, Jiang Y, van Vegten N et al (2011) Tuning the support acidity of flame-made Pd/SiO2–Al2O3 catalysts for chemoselective hydrogenation. J Catal 281:352–360

    Article  CAS  Google Scholar 

  66. Griffiths DM, Rochester CH (1978) Infrared study of the adsorption of acetone on rutile. J Chem Soc Faraday Trans 1 74:403

    Article  Google Scholar 

  67. Weitkamp J (2000) Zeolites and catalysis. Solid State Ion 131:175–188

    Article  CAS  Google Scholar 

  68. Freude D, Ernst H, Wolf I (1994) Solid-state nuclear magnetic resonance studies of acid sites in zeolites. Solid State Nucl Magn Reson 3:271–286

    Article  CAS  Google Scholar 

  69. Jiao J, Altwasser S, Wang W et al (2004) State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy. J Phys Chem B 108:14305–14310

    Article  CAS  Google Scholar 

  70. Jiao J, Kanellopoulos J, Behera B et al (2006) Effects of adsorbate molecules on the quadrupolar interaction of framework aluminum atoms in dehydrated zeolite H,Na-Y. J Phys Chem B 110:13812–13818

    Article  CAS  Google Scholar 

  71. Hunger M, Schenk U, Breuninger M et al (1999) Characterization of the acid sites in MCM-41-type materials by spectroscopic and catalytic techniques. Micropor Mesopor Mater 27:261–271

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by Deutsche Forschungsgemeinschaft, Baden-Württemberg Stiftung, and European Community with the FASTCARD (FAST industrialization and CAtalyst Research and Development) project in the Seventh Framework Program GA No. 604277 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hunger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, S., Benz, M., Obenaus, U. et al. Mechanisms of the AlCl3 Modification of Siliceous Microporous and Mesoporous Catalysts Investigated by Multi-Nuclear Solid-State NMR. Top Catal 60, 1537–1553 (2017). https://doi.org/10.1007/s11244-017-0837-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0837-6

Keywords

Navigation