Skip to main content
Log in

Synthesis and Microstructure of Antimony Oxide Nanorods

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Antimony oxide nanorods were synthesized by the microemulsion method. The nanorods had diameter in the range of 507–175 nm and a length of up to several micrometers. The microstructure of the nanorods was examined by analytical transmission electron microscopy and high-resolution transmission electron microscopy (HRTEM). Large-angle tilt diffraction experiments on the normal nanorods (about 90 nm in diameter) showed that they have an orthorhombic structure. Combining the results of internal standards using the silicon single crystal, it could be concluded that the synthesized nanorod is Sb2O4. The common growth direction of the nanorods was along the long axis. HRTEM images showed it had a periodic layer structure, and some defects and a layer of amorphous on the nanorods surface were found. The formation mechanism of Sb2O4 nanorods is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Steigerwald and L.E. Brus, Acc. Chem. Res. 23, 183 (1990); Y. Wang and N. Harron, J. Phys. Chem. 95, 525 (1991).

    Article  CAS  Google Scholar 

  2. A. Henglein, Chem. Rev. 89, 1861 (1989).

    Article  CAS  Google Scholar 

  3. N. Chestnoy, T.D. Harris, R. Hull, and L.E. Brus, J. Phys. Chem. 90, 3393 (1986).

    Article  CAS  Google Scholar 

  4. H. Hirai, H. Wakabayashi, and M. Komiyama, Chem. Lett. 7, 1047 (1983).

    Article  Google Scholar 

  5. P-A. Brugger, P. Cuendet, and M. Gratzel, J. Am. Chem. Soc. 103, 2923 (1981).

    Article  CAS  Google Scholar 

  6. J.M. Thomas, Pure Appl. Chem. 60, 1517 (1988).

    Article  CAS  Google Scholar 

  7. T.J. Trentler, K.M. Hickman, S.C. Geol, A.M. Viano, P.C. Gibbons, and W.E. Buhro, Science 280, 1791 (1999).

    Google Scholar 

  8. A.M. Morales and C.M. Lieber, Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  9. H. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, and C.M. Lieber, Nature 375, 769 (1999).

    Article  Google Scholar 

  10. W.Q. Han, S.S. Fan, Q.Q. Li, and Y.D. Hu, Science 277, 1287 (1997).

    Article  CAS  Google Scholar 

  11. J. Yang, F.C. Meldrum, and J.H. Fendler, J. Phys. Chem. 99, 5500 (1998).

    Article  Google Scholar 

  12. Y.D. Li, H.W. Liao, Y. Ding, Y.T. Qian, L. Yang, and G.E. Zhou, Chem. Mater. 10, 2301 (1998).

    Article  CAS  Google Scholar 

  13. D.J. Dzimitrowice, J.B. Goodenough, and P.J. Wiseman, Mater. Res. Bull. 17, 971 (1982).

    Article  Google Scholar 

  14. K. Ozawa, Y. Sakka, and A. Amamo, J. Mater. Res. 13, 830 (1998).

    Article  CAS  Google Scholar 

  15. D.J. Stewart, O. Knop, C. Ayasse, and F.W.D. Woodhams, Canadian Journal of Chemistry, 50, 690 (1972).

    Article  CAS  Google Scholar 

  16. Z.L. Zhang and L. Guo, J. Mater. Res. 16, 803 (2001).

    Article  CAS  Google Scholar 

  17. Powder Diffraction File No. 11–694, International Centre for Diffraction Data, Newton Square, PA.

  18. L. Guo, Z.H. Wu, T. Liu, W.D. Wang, and H.S. Zhu, Chem. Phy. Lett. 318, 49 (2000).

    Article  CAS  Google Scholar 

  19. P.M. Ajayan, O. Stephan, Ph. Redlich, and C. Colliex, Nature 375, 564 (1995).

    Article  CAS  Google Scholar 

  20. B.C. Satishkumar, A. Govindaraj, Manashi Nath, and C.N.R. Rao, J. Mater. Chem. 10, 2115 (2000).

    Article  CAS  Google Scholar 

  21. M. Johann Schwuger, K. Stickdom, and R. Schomacker, Chem. Rev. 95, 7849 (1995).

    Google Scholar 

  22. M.J. Suare, J. Phys. Chem., 94, 9808 (1993).

    Article  Google Scholar 

  23. J.D. Hopwood, S. Mann, Chem. Mater. 9, 1819 (1997).

    Article  CAS  Google Scholar 

  24. G.X. Cheng, F. Shen, L.F. Yang, L.R. Ma, and P.C. Sun, Mater. Chem. Phys. 56, 97 (1998).

    Article  CAS  Google Scholar 

  25. Powder Diffraction File No. 42–1466, International Centre for Diffraction Data, Newton Square, PA.

  26. Powder Diffraction File No. 11–689, International Centre for Diffraction Data, Newton Square, PA.

  27. Powder Diffraction File No. 17–620, International Centre for Diffraction Data, Newton Square, PA.

  28. C.A. Cody, L. Dicarlo, and R.K. Darlinton, Inorg. Chem. 18, 1572 (1979).

    Article  CAS  Google Scholar 

  29. G. Mestl, P. Ruiz, B. Delmon, and H. Knözinger, J. Phys. Chem. 98, 11276 (1994).

    Article  CAS  Google Scholar 

  30. Z.L. Wang, J. Petroski, T. Green, and M.A. El-Sayed, Proceeding, “Microscopy and Microanalysis 1999” Portland, Oregon August 1–5, edited by G.W. Bailey, W.G. Jerome, S. Mckernan, J.F. Mansfield, and R.L. Price, Springer, 1999.

    Google Scholar 

  31. M. Zhang, M. Yu. Efremov, F. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Kwan, S.L. Lai, T. Wisleder, J.E. Greene, and L.H. Allen, Phys. Rev. B 62, 10548 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z. Synthesis and Microstructure of Antimony Oxide Nanorods. Journal of Materials Research 17, 1698–1701 (2002). https://doi.org/10.1557/JMR.2002.0250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0250

Navigation