Skip to main content
Log in

Combustion Synthesis of TiN Induced by High-energy Ball Milling of Ti Under Nitrogen Atmosphere

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A planetary ball-mill device that enables one to perform solid-gas reactions at constant pressure was developed. Titanium powders were ball milled under nitrogen at a spinning rate of 960 rpm. The influence of the nitrogen pressure on the mechanochemical reactivity of titanium was analyzed at 1.5 and 11 bars. A spontaneous combustion took place during the grinding process, leading to a high yield of TiN for short milling times. The conversion of titanium into titanium nitride was facilitated by increasing the nitrogen pressure. At 11 bars, full conversion was reached for grinding times shorter than 5 h. Titanium nitride obtained in this way exhibited a high sintering activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Bars, D. David, E. Etchessahar, and J. Debuigne, Metall. Trans. A 14, 1537 (1983).

    Article  Google Scholar 

  2. G.V. White, K.J.D. Mackenzie, and D. Johnston, J. Mater. Sci. 27, 4287 (1992).

    Article  CAS  Google Scholar 

  3. R. Shaviv, Mater. Sci. Eng. A 209, 345 (1996).

    Article  Google Scholar 

  4. (a) J.P. Dekker, P.J. van der Put, H.J. Veringa, and J. Schoonman, J. Mater. Chem. 4, 689 (1994); (b) J.P. Dekker, P.J. van der Put, H.J. Veringa, and J. Schoonman, J. Am. Ceram. Soc. 80, 629 (1997).

    Article  CAS  Google Scholar 

  5. T. Sato, S. Yasuda, K. Usuki, T. Yoshioka, and A. Okuwaki, J. Mater. Sci. 31, 2495 (1996).

    Article  CAS  Google Scholar 

  6. D.T. Castro and J.Y. Ying, Nanostruct. Mater. 9, 67 (1997).

    Article  CAS  Google Scholar 

  7. F. Clement, P. Bastians, and P. Grange, Solid State Ionics 101–103, 171 (1997).

    Article  Google Scholar 

  8. Y. Nakagawa, C. Grigoriu, K. Masugata, W. Jiang, and K. Yatsui, J. Mater. Sci. 33, 529 (1998).

    Article  CAS  Google Scholar 

  9. K. Nakajima and S. Shimada, J. Mater. Chem. 8, 955 (1998).

    Article  CAS  Google Scholar 

  10. G.J. Fan, F.Q. Guo, Z.Q. Hu, M.X. Quan, and K. Lu, Phys. Rev. B 55, 11010 (1997).

    Article  CAS  Google Scholar 

  11. H. Zhang and E.H. Kisi, J. Alloys Compd. 248, 201 (1997).

    Article  CAS  Google Scholar 

  12. T. Klassen, M. Oehring, and R. Bormann, Acta Mater. 45, 3935 (1997).

    Article  CAS  Google Scholar 

  13. K.J. Bryden and J.Y. Ying, Acta Mater. 44, 3847 (1996).

    Article  CAS  Google Scholar 

  14. P. Matteazzi and M.D. Alcala, Mater. Sci. Eng. A 230, 161 (1997).

    Article  Google Scholar 

  15. R.S. Figueiredo, A. Messai, A.C. Hernandes, and A.S.B. Sombra, J. Mater. Sci. Lett. 17, 449 (1998).

    Article  Google Scholar 

  16. A. Calka and J.I. Nikolov, Nanostruct. Mater. 6, 409 (1995).

    Article  CAS  Google Scholar 

  17. Y. Chen, J.S. Willians, and G.M. Wang, J. Appl. Phys. 79, 3956 (1996).

    Article  Google Scholar 

  18. Z.L. Li, J.S. Willians, and A. Calka, J. Appl. Phys. 81, 8029 (1997).

    Article  CAS  Google Scholar 

  19. W.Y. Lim, M. Hida, A. Sakakibara, Y. Takemoto, and S. Yokomizo, J. Mater. Sci. 28, 3463 (1993).

    Article  CAS  Google Scholar 

  20. Y. Ogino, T. Yamasaki, M. Miki, N. Atsumi, and K. Yoshioka, Scripta Metall. Mater. 28, 967 (1993).

    Article  CAS  Google Scholar 

  21. M.S. El-Eskandarany, K. Sumiyama, K. Aoki, and K. Suzuki, J. Mater. Res. 7, 888 (1992).

    Article  CAS  Google Scholar 

  22. J.M. Criado, M.D. Alcala, and C. Real, Solid State Ionics 101–103, 1387 (1997).

    Article  Google Scholar 

  23. Z.H. Chin and T.P. Perng, Appl. Phys. Lett. 70, 2380 (1997).

    Article  CAS  Google Scholar 

  24. Y. Chen, Z.L. Li, and J.S. Williams, J. Mater. Sci. Lett. 14, 542 (1995).

    Article  CAS  Google Scholar 

  25. D. Wexler, A. Calka, and A.Y. Mosbah, J. Alloys Comp. 309, 201 (2000).

    Article  CAS  Google Scholar 

  26. H. Zhang, E.H. Kisi, and S. Myhra, J. Phys. D: Appl. Phys. 29, 1367 (1996).

    Article  CAS  Google Scholar 

  27. B.E. Warren, X-Ray Diffraction (Addison-Wesley, Reading, MA, 1969).

    Google Scholar 

  28. H.J. Edward and K. Toman, J. Appl. Cryst. 4, 332 (1971).

    Article  Google Scholar 

  29. Th.H. de Keijser, J.I. Langford, E.J. Mittemeijer, and A.B.P. Vogels, J. Appl. Cryst. 15, 308 (1982).

    Article  Google Scholar 

  30. H.P. Klug and L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley & Sons, New York, 1979).

    Google Scholar 

  31. J.M. Thomas, Adv. Catal. 19, 293 (1969).

    CAS  Google Scholar 

  32. W.J. Clegg, J. Am. Ceram. Soc. 83, 1039 (2000).

    Article  CAS  Google Scholar 

  33. Alloy Phase Diagrams, ASM Handbook, Vol. 3 (ASM International, Materials Park, OH, 1992), pp. 2–205.

  34. M. Magini, C. Colella, A. Iasonna, and F. Padella, Acta Mater. 46, 2841 (1998).

    Article  CAS  Google Scholar 

  35. N. Burgio, A. Iasonna, M. Magini, S. Martelli, and F. Padella, Il Nuovo Cimento 13, 459 (1991).

    Article  Google Scholar 

  36. J.M. Stewart, F.A. Kundell, and J.C. Baldwin, The X-Ray 70 System Computer Science Center (University of Maryland, Baltimore, MD, 1970).

    Google Scholar 

  37. Z.A. Munir, Am. Ceram. Soc. Bull. 67, 342 (1988).

    CAS  Google Scholar 

  38. M. Eslamloo-Grami and Z.A. Munir, J. Am. Ceram. Soc. 73, 2222 (1990).

    Article  CAS  Google Scholar 

  39. A.E. Pelekh, A.S. Mukasyan, and A. Varma, Ind. Eng. Chem. Res. 38, 793 (1999).

    Article  CAS  Google Scholar 

  40. M. Atzmon, Phys. Rev. Lett. 64, 487 (1990).

    Article  CAS  Google Scholar 

  41. G.B. Schaffer and P.G. Mc Cormick, Metall. Trans. A 23, 1285 (1992).

    Article  Google Scholar 

  42. L. Takacs and M.A. Susol, J. Solid State Chem. 121, 394 (1996).

    Article  CAS  Google Scholar 

  43. C. Real, L. Garcia, M.D. Alcala, and J.M. Criado, Solid State Ionics 141–142, 671 (2001).

    Article  Google Scholar 

  44. E. Gaffet and N. Malhouroux -Gaffet, J. Alloys Comp. 205, 27 (1994).

    Article  CAS  Google Scholar 

  45. L.L. Shaw, Z. Yang, and R. Ren, J. Am. Ceram. Soc. 81, 760 (1998).

    Article  CAS  Google Scholar 

  46. Ch. Gras, D. Vrel, E. Gaffet, and F. Bernard, J. Alloys Comp. 314, 240 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotor, F.J., Alcalá, M.D., Real, C. et al. Combustion Synthesis of TiN Induced by High-energy Ball Milling of Ti Under Nitrogen Atmosphere. Journal of Materials Research 17, 16 (2002). https://doi.org/10.1557/JMR.2002.0244

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.2002.0244

Navigation