Skip to main content
Log in

Crystallization in SiO2–metal Oxide Alloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

HfO2–SiO2 and La2O3–SiO2 amorphous alloys were prepared, and their crystallization behavior was studied. The results suggest that higher permittivities can be achieved in the La-containing system without devitrification. The crystallization mechanisms between systems are distinctly different, yet observations are consistent with bulk material. Hf-containing materials tend toward phase separation, while La-containing materials tend toward silicate formation. For Hf-containing films, negligible thickness or time dependence was observed. In La-containing films, rapid thermal anneals could improve crystallization resistance, and thickness effects related to interface reactions were observed. These behaviors are discussed in the context of phase diagrams and metastable immiscibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.I. Association, The International Technology Roadmap for Semiconductors (Sematech, Austin, TX, 2000).

    Google Scholar 

  2. M. Copel, E. Cartier, and F.M. Ross, Appl. Phys. Lett. 78, 1607 (2001).

    Article  CAS  Google Scholar 

  3. T.M. Klein, D. Niu, W.S. Epling, W. Li, D.M. Maher, C.C. Hobbs, R.I. Hedge, I. J.R. Baumvol, and G.N. Parsons, Appl. Phys. Lett. 75, 4001 (1999).

    Article  CAS  Google Scholar 

  4. G. Lucovsky and J.C. Phillips, Appl. Surf. Sci. 166, 497 (2000).

    Article  CAS  Google Scholar 

  5. H. Ono and T. Katsumata, Appl. Phys. Lett. 78, 1832 (2001).

    Article  CAS  Google Scholar 

  6. W-J. Qi, R. Nieh, E. Dharmarajan, B.H. Lee, Y. Jeon, L. Kang, K. Onishi, and J.C. Lee, Appl. Phys. Lett. 77, 1704 (2000).

    Article  CAS  Google Scholar 

  7. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 87, 484 (2000).

    Article  CAS  Google Scholar 

  8. G.D. Wilk, in Advanced Gate Oxide Dielectrics for Scaled CMOS (Santa Barbara, CA, 1999).

    Google Scholar 

  9. J.J. Chambers and G.N. Parsons, Appl. Phys. Lett. 77, 2385 (2000).

    Article  CAS  Google Scholar 

  10. S. Guha, E. Cartier, M.A. Gribelyuk, N.A. Bojarczuk, and M.C. Copel, Appl. Phys. Lett. 77, 2710 (2000).

    Article  CAS  Google Scholar 

  11. D.A. Neumayer and E. Cartier, J. Appl. Phys. 90, 1801 (2001).

    Article  CAS  Google Scholar 

  12. B.A. Inc., http://www.bruker-axs.com/production/indexie.htm (2001).

  13. G. Lucovsky and G.B. Rainer, Appl. Phys. Lett. 77, 2912 (2000).

    Article  CAS  Google Scholar 

  14. P. Becher and M.V. Swain, J. Am. Ceram. Soc. 75, 493 (1992).

    Article  CAS  Google Scholar 

  15. E.M. Levine, C.R. Robbins, H.F. McMurdie, Phase Diagrams for Ceramists HfO2 P-T diagram (The American Ceramic Society, Columbus, OH, 1985), Vol. 3, Fig. 4256.

    Google Scholar 

  16. H.M. Ondik and H.F. McMurdie, Phase Diagrams for Zirconium and Zirconia Systems, P-T diagram of ZrO2 (Am. Ceram. Soc., Columbus, OH, 1985), Vol. X, Figs. Zr-001, Zr-042, Zr-043, Zr-046.

    Google Scholar 

  17. Y.S. Touloukian, Thermophysical Properties of Matter, The TPRC Data Series, Vol. 13 (IFI/Plenum, New York).

  18. E.M. Levine, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists ZrO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 2, Fig. 2400.

    Google Scholar 

  19. E.M. Levine, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists HfO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 3, Fig. 4443.

    Google Scholar 

  20. C.E. Curtis and H.G. Sowman, J. Am. Ceram. Soc. 36, 190 (1953).

    Article  CAS  Google Scholar 

  21. H.B. Barlett, J. Am. Ceram. Soc. 14, 837 (1931).

    Article  CAS  Google Scholar 

  22. S.P. Murkherjee, J. Zarzycki, and J.P. Traverse, J. Mater. Sci. 11, 341 (1976).

    Article  Google Scholar 

  23. M. Decottignies, J. Phalippou, and J. Zarzycki, J. Mater. Sci. 13, 2605 (1978).

    Article  CAS  Google Scholar 

  24. S.P. Murkherjee and J. Zarzycki, J. Am. Ceram. Soc. 62, 1 (1979).

    Article  Google Scholar 

  25. H.J. Stevens, in Introduction to Glass Science, edited by L.D. Pye, H.J. Stevens, and W.C. LaCourse (Plenum Press, New York, 1972), Vol. 1, pp. 197–235.

    Book  Google Scholar 

  26. E.M. Levine, C.R. Robbins, H.F. McMurdie, R.S. Roth, T. Negas, and L.P. Cook, Phase Diagrams for Ceramists Al2O3-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vols. 1, 4, 5, Figs. 313, 590, 6443, 6444.

    Google Scholar 

  27. W.D. Kingery, H.K. Bowen, and D.R. Uhlman, Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1976).

    Google Scholar 

  28. R. McPherson and B.V. Schafer, J. Mater. Sci. 19, 2696 (1984).

    Article  CAS  Google Scholar 

  29. E.M. Levine, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists UO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 2, Fig. 2399.

    Google Scholar 

  30. E.M. Levine, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists UO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 1, Fig. 360.

    Google Scholar 

  31. E.M. Levine, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists ThO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 2, Fig. 2397.

    Google Scholar 

  32. E.M. Levine, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists ZrO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 1, Figs. 361 and 362.

    Google Scholar 

  33. E.M. Levine, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists ThO2-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 1, Fig. 359.

    Google Scholar 

  34. E.M. Levine, C.R. Robbins, and H.F. McMurdie, Phase Diagrams for Ceramists La2O3-SiO2 system (Am. Ceram. Soc., Columbus, OH, 1985), Vol. 2, Fig. 2372.

    Google Scholar 

  35. W-J. Qi, R. Nieh, B.H. Lee, K. Onishi, L. Kang, Y. Jeon, J.C. Lee, V. Kaushik, B-Y. Neuyen, L. Prabhu, K. Eisenbeiser, and J. Finder, Digest of Tech. Papers, IEDM Symp. VLSI Technol. 40 (2000).

  36. J.C. Lee, W. Qi, B.H. Lee, L. Kang, K. Onishi, Y. Jeon, and E. Dharmarjan, Results presented at the MRS Workshop on High-K Gate Dielectrics, New Orleans, LA, June 1–2 (2000).

    Google Scholar 

  37. J-P. Maria, D. Wicaksana, A.I. Kingon, B. Busch, W.H. Schulte, E. Garfunkel, and T. Gustafsson, J. Appl. Phys. 90, 3476 (2001).

    Article  CAS  Google Scholar 

  38. S. Stemmer (2000, unpublished).

  39. F.P. Glasser, I. Warshaw, and R. Roy, Phys. Chem. Glasses 1(2), 39 (1960).

    Google Scholar 

  40. C.A. Billman, P.H. Tan, K.J. Hubbard, and D.G. Schlom, Submitted to Mater. Res. Soc. Symp. Proc., Ultrathin SiO2 and High-K Materials for ULSI Gate Dielectrics (1999).

  41. J-P. Maria and D. Wicaksana, in These results correspond to measurements taken on (HfO2)1-x-(SiO2)x metal-insulator-metal structures. Films were fabricated in identical fashion as those for crystallization measurements with the exception that a Pt bottom electrode was used to facilitate accurate dielectric analysis. (2001).

  42. S. Roberts, J.G. Ryan, and D.W. Martin, Emerging Semiconductor Technology (ASTM STP 960, ASTM, Philadelphia, 1986).

    Google Scholar 

  43. R.D. Shannon, J. Appl. Phys. 73, 348 (1993).

    Article  CAS  Google Scholar 

  44. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).

    Google Scholar 

  45. T. Mahalingham, M. Radhakrishnan, and C. Balasubramanian, Thin Solid Films 78, 229 (1981).

    Article  Google Scholar 

  46. J-P. Maria and D. Wicaksana, in These results correspond to measurements taken on (La2O3)1-x-(SiO2)x metal-insulatorsemiconductor structures. Films were fabricated in identical fashion as those for crystallization measurements with the exception that highly doped Si wafers were used to facilitate accurate dielectric analysis. (2001).

  47. D.I. Chernobrovkin, V.S. Ten -Gushev, and V.V. Bakhtinov, Radio Eng. Electron. Phys. 17, 334 (1972).

    Google Scholar 

  48. Powder Diffraction File: Inorganic Phases, Card #40-234 (La2SiO5), Vol. 40 (Swarthmore, PA, 1999).

  49. Powder Diffraction File: Inorganic Phases, Card #8-342 (HfO2)(tet), Vol. 8 (Swarthmore, PA, 1999).

  50. Powder Diffraction File: Inorganic Phases, Card #34-104 (HfO2)(mon), Vol. 34 (Swarthmore, PA, 1999).

  51. Powder Diffraction File: Inorganic Phases, Card #5-602 (La2O3), Vol. 5 (Swarthmore, PA, 1999).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maria, J.P., Wickaksana, D., Parrette, J. et al. Crystallization in SiO2–metal Oxide Alloys. Journal of Materials Research 17, 15 (2002). https://doi.org/10.1557/JMR.2002.0234

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.2002.0234

Navigation