Skip to main content
Log in

Properties of Porous AlN Multilayered Ceramic Sandwich Substrates

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of denser and higher powered integrated circuits has led to a corresponding demand on the performance of dielectric substrates. This paper reports on the fabrication and properties of an AlN multilayered sandwich substrate comprising porous tape-cast layers sandwiched between nonporous layers. Tapes were produced by nonaqueous tape casting, with the porous tapes produced using polymer microspheres as sacrificial molds. Starting from initially Al2O3-rich tapes, the multilayered sandwich substrates were reaction sintered to produce AlN substrates. No interface cracking or delamination was observed in the substrates as a result of the processing. The added porosity resulted in a decrease in the substrate dielectric constant in correspondence to porosity volume. Mechanical strength of the sandwich substrates was improved over that of nonsandwich porous substrates, while substrates having noninterconnected pores showing higher mechanical strength than substrates with connected pores. Substrates with more than 2% porosity showed porosity-dependent thermal conductivity values, while thermal conductivity of substrates with less than 2% porosity was dependent on grain boundary effects. Thermal expansion coefficient of the substrates was unaffected by porosity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semiconductor Industry Association, International Technology Roadmap for semiconductors, ITRS Report 1999 Edition (1999).

  2. R.C. Buchanan, Ceramic Materials for Electronics: Processing, Properties and Applications (Marcell Decker Inc., New York, 1986).

    Google Scholar 

  3. J.S. Reed, Principles of Ceramics Processing (John Wiley & Sons, New York, 1994).

    Google Scholar 

  4. B. Schwartz, Am. Ceram. Soc. Bull. 65(7), 1032–1035 (1986).

    Google Scholar 

  5. T. Chartier and E. Streicher, J. Eur. Ceram. Soc. 9, 231–242 (1992).

    Article  CAS  Google Scholar 

  6. J.M. Haussone, Mater. Manuf. Processes 10(4), 717–755 (1995).

    Article  Google Scholar 

  7. D. Wirth, Engineered Materials Handbook (ASTM, West Con-shohocken, PA, 1991), Vol. 4 pp. 1107–1111.

  8. J.P. Disson and R. Bachelard, Ind. Ceram. 896(9), 602–606.

  9. W.T. Shugg, Handbook of Electrical and Electronic Insulating Materials, 2nd ed. (IEEE, Piscataway, NJ, 1995).

  10. A.A. Mohammed and S.J. Corbert, Proc. Int. Symp. Microelec-tron. 218–224 (1985).

  11. G. Selvaduray and L. Sheet, Mater. Sci. Technol. 9, 463–473 (1993).

    Article  CAS  Google Scholar 

  12. F. Boey, L. Cao, K.A. Khor, and A.I.Y. Tok. Acta Mater. (in press).

  13. F.Y.C. Boey, X.L. Song, Z. Gu, and A.I.Y. Tok, J. Mater. Process. Technol. 89–90, 478–480 (1999).

    Article  Google Scholar 

  14. D.W. Kellerman, in Hollow and Solid Spheres and Microspheres: Science and Technology Associated with Their Fabrication and Application (Mat. Res. Soc. Symp. Proc. 372, Pittsburgh, PA, 1995). pp. 239–245.

  15. E.H. Kraft, Materials and Designs for Advanced MIC Packages (American Institute of Physics, Melville, NY, 1986), pp. 255–266.

  16. A.I.Y. Tok, F.Y.C. Boey, and W.J. Clegg, J. Mat. Res. (2001, in press).

  17. G. Carprino and A. Langella, J. Comp. Mater. 34(9), 791–814 (2000).

    Article  Google Scholar 

  18. D.J. Bakos and G.C. Papanicolaou, Comp. Sci. Technol. 49, 35–43 (1993).

    Article  CAS  Google Scholar 

  19. B. Lamy and E. Dixneuf, J. Mater. Sci. Lett. 18, 607–608 (1999).

    Article  CAS  Google Scholar 

  20. Y. Shenbar, Y. Prostig and E. Altus, Comp. Struct. 35, 143–152 (1995).

    Article  Google Scholar 

  21. G. Caprino and R. Teti, Sandwich Structures Handbook (Prato Publications, Prato, Italy, 1989).

    Google Scholar 

  22. M. Vincenzo, P. Sglavo, P. Bosceri, E. Trentini, and M. Ceschini, J. Am. Ceram. Soc. 82(8), 2269–2272 (1999).

    Google Scholar 

  23. Y. Huang, Development of hollow polymer microspheres, Master of Engineering Thesis, Nanyang Technological University, Singapore (1999).

  24. A.I.Y. Tok, F.Y.C. Boey, and Y.C. Lam, Mater. Sci. Eng. A280, 282–288 (2000).

    Article  CAS  Google Scholar 

  25. A.I.Y. Tok, F.Y.C. Boey, and K.A. Khor, J. Mater. Process. Tech-nol. 89–90, 508–512 (1999).

    Article  Google Scholar 

  26. S.C. Joshi, Y.C. Lam, F.Y.C. Boey, and A.I.Y. Tok, J. Mater. Process. Technol. (2001).

  27. W.C. Mackrodt, in Advances in Ceramics, edited by C.R.A. Cadow and E.C. Mackrodt (American Ceramic Society, Westerville, OH, 1987) pp. 293–306.

  28. J.H. Enloe, R.W. Rice, J.W. Lau, R. Kumar, and S.Y. Lee, J. Am. Ceram. Soc. 74(9), 2214–2219 (1991).

    Article  CAS  Google Scholar 

  29. N. Kuramoto, H. Taniguchi and I. Aso, Am. Ceram. Soc. Bull. 68(4), 833–837 (1989).

    Google Scholar 

  30. D. Hill and T.W. Clyne, An Introduction to Composite Materials, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 1996).

  31. E. Ryahkewich, J. Am. Ceram. Soc. 36(2), 65–68 (1953).

    Article  Google Scholar 

  32. W. Duckworth, J. Am. Ceram. Soc. 36(2), 69 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boey, F.Y.C., Tok, A.I.Y., Long, Y. et al. Properties of Porous AlN Multilayered Ceramic Sandwich Substrates. Journal of Materials Research 17, 1061–1068 (2002). https://doi.org/10.1557/JMR.2002.0157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0157

Navigation