Skip to main content
Log in

Synchrotron X-ray Diffraction Study of Ba4.5Nd9Ti18O54 Microwave Dielectric Ceramics at 10–295 K

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure of ceramic Ba4.5Nd9Ti18O54 was investigated by synchrotron x-ray powder diffraction from 10 to 295 K. Reitveld refinement and Le Bail profile analysis were applied to the data. Based on an orthorhombic structure, unit cell parameters of a = 22.3479(3) Å, b = 7.6955(1) Å, and c = 12.2021(2) Å were obtained at room temperature and a = 22.3367(5) Å, b = 7.6738(1) Å, and c = 12.1842(3) Å at 10 K. No evidence was found for any major structural change from 10 to 295 K. Within the tungsten bronze framework the two pentagonal channels were fully occupied by Ba; the remaining Ba atoms shared the rhombic channels with Nd. Thermal expansion of the unit cell was found to be anisotropic. The largest expansion occurs along the b cell edge, and the least along the a cell edge. It is proposed that the anisotropy is due to enhanced bending of the TiO6 polyhedra chains along the b direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kolar, S. Gaberšček, Z. Stadler, and D. Suvorov, Ferroelectrics 27, 269 (1980).

    Article  CAS  Google Scholar 

  2. K. Wakino, K. Minai, and H. Tamura, J. Am. Ceram. Soc. 67, 278 (1984).

    Article  CAS  Google Scholar 

  3. R.G. Matveeva, M.B. Varfolomeev, and L.S. Il’yushchenko, Russ. J. Inorg. Chem. (Engl. Trans.) 29, 17 (1984).

    Google Scholar 

  4. H. Ohsato, T. Ohhashi, S. Nishigaki, T. Okuda, K. Sumiya, and S. Suzuki, Jpn. J. Appl. Phys. 32, 4323 (1993).

    Article  CAS  Google Scholar 

  5. H. Ohsato, T. Ohhashi, H. Kato, S. Nishigaki, and T. Okuda, Jpn. J. Appl. Phys. 34, 187 (1995).

    Article  CAS  Google Scholar 

  6. R. Ubic, I.M. Reaney, and W.E. Lee, International Materials Reviews 43, 205 (1998).

    Article  CAS  Google Scholar 

  7. C.J. Rawn, D.P. Birnie III, M.A. Bruck, J.H. Enemark, and R.S. Roth, J. Mater. Res. 13, 187 (1998).

    Article  CAS  Google Scholar 

  8. H. Okudera, H. Nakamura, H. Toraya, and H. Ohsato, J. Solid State Chem. 142, 336 (1999).

    Article  CAS  Google Scholar 

  9. F. Azough, P.E. Champness, and R. Freer, J. Appl. Crystallogr. 28, 577 (1995).

    Article  CAS  Google Scholar 

  10. P. Setasuwon, R. Freer, F. Azough, and C. Leach, in Millimeter/ Submillimeter-Wave Technology Materials, Devices, and Diagnostics, edited by S.K. Sundaram, P.P. Woskov, Y-I. Ogita, and J. Tuovinen (Mater. Res. Soc. Symp. Proc. 631, AA.2.7, 2000), available from http://www.mrs.org/publications/epubs/proceedings/spring2000/aa/

  11. A. Silva, F. Azough, R. Freer, and C. Leach, J. Eur. Ceram. Soc. 20, 2727 (2000).

    Article  CAS  Google Scholar 

  12. F. Azough, A.C. Wright, and R. Freer, J. Mater. Sci. 36, 5093 (2001).

    Article  CAS  Google Scholar 

  13. I.H. Munro, J. Synchrotron Rad. 4, 344 (1997).

    Article  CAS  Google Scholar 

  14. R.J. Cernik, P.K. Murray, P. Pattison, and A.N. Fitch, J. Appl. Crystallogr. 23, 292 (1990).

    Article  CAS  Google Scholar 

  15. S.P. Collins, R.J. Cernik, P. Pattison, A.M.T. Bell, and A.N Fitch, Rev. Sci. Instrum. 63, 1013 (1992).

    Article  Google Scholar 

  16. E.J. MacLean, H.F.F. Millington, A.A. Neild, and C.C. Tang, Mater. Sci. Forum 321–324, 212 (2000).

    Article  Google Scholar 

  17. C.C. Tang, G. Bushnell-Wye, and R.J. Cernik, J. Synchrotron Rad. 5, 929 (1998).

    Article  CAS  Google Scholar 

  18. M.A. Roberts and C.C. Tang, J. Synchrotron Rad. 5, 1270 (1998).

    Article  CAS  Google Scholar 

  19. M. Hart and W. Parrish, Mater. Sci. Forum 9, 39 (1986).

    Article  CAS  Google Scholar 

  20. W. Parrish, M. Hart, C.G. Erickson, N. Masciocchi, and T.C. Huang, Adv. X-ray Anal. 29, 243 (1986).

    CAS  Google Scholar 

  21. H.M. Rietveld, Acta Cryst. 22, 151 (1967).

    Article  CAS  Google Scholar 

  22. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969).

    Article  CAS  Google Scholar 

  23. A. Le Bail, in Accuracy in Powder Diffraction II, NIST Spec. Pub. No. 846, edited by E. Prince and J.K. Stalick (U.S. Department of Commerce, Gaithersburg, MD, 1992), p. 213.

  24. International Table for X-ray Crystallography, 4th ed., Vol. A, Space-Group Symmetry, edited by Theo Hahn (Kluwer Academic Publishers, Dordrecht/Boston/London, 1995), p. 288.

  25. International Table for X-ray Crystallography, 2nd ed., Vol. C, Mathematical, Physical and Chemical Tables, edited by A.J.C. Wilson and E. Prince (Kluwer Academic Publishers, Dordrecht/ Boston/London, 1999), p. 572–573.

  26. S. Sasaki, KEK Report 88-14 (High Energy Accelerator Research Organization, Tsukuba, Japan, 1989).

  27. T. Ohhashi, M.S. Thesis, Nagoya Institute of Technology, Japan (1994).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, C.C., Roberts, M.A., Azough, F. et al. Synchrotron X-ray Diffraction Study of Ba4.5Nd9Ti18O54 Microwave Dielectric Ceramics at 10–295 K. Journal of Materials Research 17, 675–682 (2002). https://doi.org/10.1557/JMR.2002.0096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0096

Navigation