Skip to main content
Log in

Simultaneous Synthesis and Consolidation of Nanostructured MoSi2

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new process combining electric field activation and the imposition of pressure from mechanically activated powder mixtures is demonstrated as a means to simultaneously synthesize and densify nano-MoSi2 in one step. Nanophase reactants (Mo + 2Si) produced by mechanical activation are reacted by field activation with the simultaneous application of a uniaxial pressure. Mo + 2Si powders were comilled in a specially designed planetary mill to obtain nanometric reactants but to avoid formation of any product phases. These were then subjected to high alternating currents (1600 A) and pressures of 106 MPa. Under these conditions, a reaction is initiated and completed within a short period of time (3–6 min). The relative density of the product ranged from 82 to 93%. The crystallite size of the MoSi2 compound was determined by x-ray diffraction line-broadening analysis using the Langford method. The size ranged from 58 to 75 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kham, S. Saka, P. Veyssière, and P. Costa, Intermetallics for structural applications, High Temperature Materials for Power Engineering, Liège, France, Sept. 24–27, 1990 (1990).

    Google Scholar 

  2. M.J. Maloney and D. Shah, Advanced Intermetallics—Silicide, Physical Metallurgy and Processing of Intermetallic Compounds, edited by N.S. Stoloff and V.K. Sikka (Chapman and Hall, London, United Kingdom, 1996) p. 441.

  3. Y.J. Jeng and B.J. Lavernia, J. Mater. Sci. 29, 2557 (1994).

    Article  Google Scholar 

  4. N.S. Stoloff, Mater. Sci. Eng. A A261, 169 (1999).

    Article  CAS  Google Scholar 

  5. J. Subrahmanyam, J. Am. Ceram. Soc. 76(1), 226 (1993).

    Article  Google Scholar 

  6. C.D. Wirkus and D.R. Wilder, J. Am. Ceram. Soc. 49(4), 173 (1966).

    Article  CAS  Google Scholar 

  7. W.Y. Lin, L.Y. Hsu, and R.F. Speyer, J. Am. Ceram. Soc. 77(5), 1162 (1994).

    Article  CAS  Google Scholar 

  8. D.A. Hardwick, P.L. Martin, S.N. Patankar, and J.J. Lewandowski, in Proceedings of the 1st International Symposium on Structural Intermetallics. 1993: (TMS AIME, Warrendale, PA, 1993), p. 665.

  9. S. Zhang and Z.A. Munir, J. Mater. Sci. 26, 3685 (1991).

    Article  CAS  Google Scholar 

  10. A. Newman, T. Jewett, S. Sampath, C. Berndt, and H. Herman, J. Mater. Res. 13(9), 2662 (1998).

    Article  CAS  Google Scholar 

  11. H. Gleiter, Acta Mater. 48, 1 (2000).

    Article  CAS  Google Scholar 

  12. R.W. Siegel, Nanostruct. Mater. 4, 21 (1994).

    Article  Google Scholar 

  13. C.C. Koch, Nanostruct. Mater. 2, 109 (1993).

    Article  CAS  Google Scholar 

  14. H. Hahn and K.A. Padmanabhan, Philos. Mag. B 76, 559–571 (1997).

    Article  CAS  Google Scholar 

  15. R.B. Schwarz, S.R. Srinivasan, J.J. Petrovic, and C.J. Maggiore, Mater. Sci. Eng. A 155, 75 (1992).

    Article  Google Scholar 

  16. Z.A. Munir and U. Anselmi-Tanburini, Mater. Sci. Rep. 3, 277 (1989).

    Article  CAS  Google Scholar 

  17. Z.A. Munir, Ceram. Bull. 67, 342 (1988).

    CAS  Google Scholar 

  18. J.J. Moore and H.J. Feng, Prog. Mater. Sci. 39, 243 (1995).

    Article  CAS  Google Scholar 

  19. A.G. Merzhanov, in Combustion and Plasma Synthesis of High Temperature Materials, edited by Z.A. Munir and J.B. Holt (VCH publishers, New York, 1999).

  20. Z.A. Munir, J. Mater. Synth. Process. 1, 387 (1993).

    CAS  Google Scholar 

  21. Z.A. Munir, I.J. Shon, and K. Yamazaki, Simultaneous Synthesis and Densification by Field-Activated Combustion, U.S. Patent No. 5 794 113 (11 August 1998).

  22. I.J. Shon, Z.A. Munir, K. Yamazaki, and K. Shoda, J. Am. Ceram. Soc. 79, 1875 (1996).

    Article  CAS  Google Scholar 

  23. F. Charlot, E. Gaffet, F. Bernard, B. Zeghmati, and J.C. Niepce, Mater. Sci. Eng. A A262, 279 (1999).

    Article  CAS  Google Scholar 

  24. C. Gras, F. Charlot, E. Gaffet, F. Bernard, and J.C. Niepce, Acta Mater. 47, 2113 (1999).

    Article  CAS  Google Scholar 

  25. C. Gras, D. Vrel, E. Gaffet, and F. Bernard, J. Alloys Compd. 314, 240 (2001).

    Article  CAS  Google Scholar 

  26. V. Gauthier, C. Josse, F. Bernard, E. Gaffet, and J.P. Larpin, Mater. Sci. Eng. A A265, 117 (1999).

    Article  CAS  Google Scholar 

  27. Ch. Gras, E. Gaffet, F. Bernard, and J.C. Niepce, Mater. Sci. Eng. A A264, 94 (1999).

    Article  CAS  Google Scholar 

  28. F. Bernard, H. Souha, and E. Gaffet, Mater. Sci. Eng. A A284, 301 (2000).

    Article  CAS  Google Scholar 

  29. Z.A. Munir, F. Charlot, F. Bernard, and E. Gaffet, U.S. Patent 6 200 515 (13 Mar. 2001).

  30. J. Rawers, G. Slavens, D. Govier, C. Dogan, and R. Doan, Metall. Mater. Trans. A A27, 3126 (1996).

    Article  Google Scholar 

  31. J. Rawers, Nanostruct. Mater. 11, 512 (1999).

    Google Scholar 

  32. Z.A. Munir, Mater. Sci. Eng. A A287, 125 (2000).

    Article  CAS  Google Scholar 

  33. E. Gaffet, Mater. Sci. Eng. A A132, 181 (1991).

    Article  CAS  Google Scholar 

  34. M. Abdellaoui and E. Gaffet, J. Alloys Compd. 198, 155 (1993).

    Article  CAS  Google Scholar 

  35. M. Abdellaoui and E. Gaffet, Acta Mater. 44(2), 198, 725 (1993).

    Article  Google Scholar 

  36. F. Charlot, E. Gaffet, F. Bernard, and Z.A. Munir, J. Am. Ceram. Soc. 84(5), 910 (2001).

    Article  Google Scholar 

  37. F. Bernard, F. Charlot, E. Gaffet, and J.C. Niepce, Int. J. SHS 7, 233 (1998).

    CAS  Google Scholar 

  38. Y. Zhang and G.C. Stangle, J. Mater. Res. 10, 1828 (1995).

    Article  CAS  Google Scholar 

  39. K.K. Chawla, J.J. Petrovic, J. Alba, Jr., and R. Hexemer, Mater. Sci. Eng. A A261, 181 (1999).

    Article  CAS  Google Scholar 

  40. J.S. Jayashankar, E.N. Ross, P.D. Eason, and M.J. Kaufman, Mater. Sci. Engl. A A239–240, 485 (1997).

    Article  Google Scholar 

  41. M. Yamaguchi, H. Inui, and K. Ito, Acta Mater. 48, 307 (2000).

    Article  CAS  Google Scholar 

  42. S.C. Deevi, J. Mater. Sci. 26, 3343 (1991).

    Article  CAS  Google Scholar 

  43. S.W. Jo, G.W. Lee, J.T. Moon, and Y.S. Kim, Acta Mater. 44, 4317 (1996).

    Article  CAS  Google Scholar 

  44. S.W. Chae, C.H. Son, and Y.S. Kim, Mater. Sci. Eng. A A279, 111 (2000).

    Article  CAS  Google Scholar 

  45. Y.T. Zhu, M. Stan, S.D. Conzone, and D.P. Butt, J. Am. Ceram. Soc. 82, 2708 (1999).

    Google Scholar 

  46. Y.S. Kim, M.R. Johnson, R. Abbaschian, and M.J. Kaufman, in High-temperature Ordered Intermetallic Alloys IV, edited by L.A. Johnson, D.P. Pope, and J.O. Stiegler (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 839.

  47. J.L. Langford, The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition, Proc. of Int. Conf. Accuracy in Powder Diffraction II, held at NIST, Gaithersburg, MD, May 26–29, 1992 (NIST, Gaithersburg, MD, 1992).

  48. N.C. Halder and C.N.J. Wagner, Acta Crystallogr. 20, 91 (1966).

    Article  Google Scholar 

  49. Y. Zhang and G.C. Stangle, J. Mater. Res. 10, 1962 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gras, C., Bernard, F., Charlot, F. et al. Simultaneous Synthesis and Consolidation of Nanostructured MoSi2. Journal of Materials Research 17, 542–549 (2002). https://doi.org/10.1557/JMR.2002.0076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0076

Navigation