Skip to main content
Log in

Phase manipulation of two-dimensional MoS2 nanostructures

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Simple hydrothermal process was used to successfully produce two-dimensional (2D) MoS2 powder flower-like nanosheets. The structure of the end product 2D-MoS2 is altered by changing the preparation conditions of reaction time and pH value with a constant autoclave temperature. Via annealing at 500°C, all samples transfer into 2H-MoS2 instead of 1T-MoS2. X-ray diffraction patterns showed that the peaks along (002) planes shifted dramatically from 14.2° to 9.4°. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images revealed that the prepared samples have a flower-like structure composed of spheres of nanosheets with a good polycrystalline structure. The energy gap for pristine and annealed samples is calculated from diffuse reflectance measurements and found to be 1.3 and 0.68 eV, respectively. Differential scanning calorimeter curves showed an impressive exothermic peak at 318°C, suggesting a structural to the stable 2H-MoS2 phase. The Brunauer–Emmett–Teller technique showed rapid decreases in the samples surface area at nearly 48 m2 g–1 with the structural transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 1

    Article  Google Scholar 

  2. Wei Z, Li B, Xia C, Cui Y, He J, Xia J B et al 2018 Small Methods 2 1800094

    Article  Google Scholar 

  3. Pető J, Ollár T, Vancsó P, Popov Z I, Magda G Z, Dobrik G et al 2018 Nat. Chem. 10 1246

    Article  Google Scholar 

  4. Saber M R, Khabiri G, Maarouf A A, Ulbricht M and Khalil A S 2018 RSC Adv. 8 26364

    Article  CAS  Google Scholar 

  5. Tsai C, Chan K, Nørskov J K and Abild-Pedersen F 2015 Surf. Sci. 640 133

    Article  CAS  Google Scholar 

  6. Wang Q, Zhao Z L, Dong S, He D, Lawrence M J, Han S et al 2018 Nano Energy 53 458

    Article  CAS  Google Scholar 

  7. Cao Y, Gan S, Geng Z, Liu J, Yang Y, Bao Q et al 2016 Sci. Rep. 6 1

    Article  CAS  Google Scholar 

  8. Faramarzi V, Ahmadi V, Fotouhi B and Abasifard M 2019 Sci. Rep. 9 1

    Article  CAS  Google Scholar 

  9. Gao X, Wang X, Ouyang X and Wen C 2016 Sci. Rep. 6 1

    Article  Google Scholar 

  10. Goel N, Bera J, Kumar R, Sahu S and Kumar M 2021 IEEE Sens. J. 21 8878

    Article  CAS  Google Scholar 

  11. Jayachandran D, Oberoi A, Sebastian A, Choudhury T H, Shankar B, Redwing J M et al 2020 Nat. Electron. 3 646

    Article  Google Scholar 

  12. Liu Y, Peng J, Wang S, Xu M, Gao M, Xia T et al 2018 NPG Asia Mater. 10 e458

    Article  Google Scholar 

  13. Mishra V, Smith S, Ganapathi K and Salahuddin S 2013 IEEE 2013 International electron devices meeting (IEDM), p 5.6. 1

  14. Shi T, Hou X, Guo S, Zhang L, Wei C, Peng T et al 2021 Nat. Commun. 12 1

    Article  Google Scholar 

  15. Tran P D, Tran T V, Orio M, Torelli S, Truong Q D, Nayuki K et al 2016 Nat. Mater. 15 640

    Article  CAS  Google Scholar 

  16. Zhang W, Zhang P, Su Z and Wei G 2015 Nanoscale 7 18364

    Article  CAS  Google Scholar 

  17. Wang C, Jin J, Sun Y, Yao J, Zhao G and Liu Y 2017 J. Chem. Eng. 327 774

    Article  CAS  Google Scholar 

  18. Zhao Y, Zhang X, Wang C, Zhao Y, Zhou H, Li J et al 2017 Appl. Surf. Sci. 412 207

    Article  CAS  Google Scholar 

  19. Gao Y, Chen C, Tan X, Xu H and Zhu K 2016 J. Colloid Interface Sci. 476 62

    Article  CAS  Google Scholar 

  20. Yan H, Chu L, Li Z, Sun C, Shi Y and Ma J 2022 Sens. Actuator A Phys. 4 100103

    Google Scholar 

  21. Chen L, Feng Y, Zhou X, Zhang Q, Nie W, Wang W et al 2017 ACS Appl. Mater. Interfaces 9 17347

    Article  CAS  Google Scholar 

  22. Finn S T and Macdonald J E 2016 ACS Appl. Mater. Interfaces 8 25185

    Article  CAS  Google Scholar 

  23. Jin H, Song T, Paik U and Qiao S-Z 2021 Acc. Mater. Res. 2 559

    Article  CAS  Google Scholar 

  24. Zhao G-Y, Deng H, Tyree N, Guy M, Lisfi A, Peng Q et al 2019 Appl. Sci. 9 678

    Article  CAS  Google Scholar 

  25. Zhu G, Wang W, Wu K, Tan S, Tan L and Yang Y 2016 Ind. Eng. Chem. Res. 55 12173

    Article  CAS  Google Scholar 

  26. Deng S, Luo M, Ai C, Zhang Y, Liu B, Huang L et al 2019 Angew. Chem. Int. Ed. 58 16289

    Article  CAS  Google Scholar 

  27. Karunadasa H I, Montalvo E, Sun Y, Majda M, Long J R and Chang C J 2012 Science 335 698

    Article  CAS  Google Scholar 

  28. Liu W, Hu Q, Mo F, Hu J, Feng Y, Tang H et al 2014 J. Mol. Catal. A Chem. 395 322

    Article  CAS  Google Scholar 

  29. Liu Z, Liu J, Lou J and Fan H 2020 Nat. Commun. 11 2253

    Article  Google Scholar 

  30. Wu W, Niu C, Wei C, Jia Y, Li C and Xu Q 2019 Angew. Chem. Int. Ed. 58 2029

    Article  CAS  Google Scholar 

  31. Zhu D, Liu J, Zhao Y, Zheng Y and Qiao S Z 2019 Small 15 1805511

    Article  Google Scholar 

  32. Li G, Zhang D, Qiao Q, Yu Y, Peterson D, Zafar A et al 2016 J. Am. Chem. Soc. 138 16632

    Article  CAS  Google Scholar 

  33. Abdel Maksoud M, Bedir A G, Bekhit M, Abouelela M M, Fahim R A, Awed A et al 2021 Environ. Chem. Lett. 19 3645

    Article  CAS  Google Scholar 

  34. Hasani A, Le Q V, Tekalgne M, Choi M-J, Lee T H, Jang H W et al 2019 NPG Asia Mater. 11 1

    Article  Google Scholar 

  35. Mulu M, RamaDevi D, Belachew N and Basavaiah K 2021 RSC Adv. 11 24536

    Article  CAS  Google Scholar 

  36. Saseendran S B, Ashok A and Asha A 2022 Int. J. Hydrogen Energy 47 9579

    Article  CAS  Google Scholar 

  37. Wells R A, Zhang M, Chen T-H, Boureau V, Caretti M, Liu Y et al 2022 ACS Nano 16 5719

    Article  CAS  Google Scholar 

  38. Bala A, Sen A, Kim Y-H, Kim Y-M, Gandla S, Park H et al 2022 J. Phys. Chem. C 126 9696

    Article  CAS  Google Scholar 

  39. Cao Y 2021 ACS Nano 15 11014

    Article  CAS  Google Scholar 

  40. Cheng Z, Xiao Y, Wu W, Zhang X, Fu Q, Zhao Y et al 2021 ACS Nano 15 11417

    Article  CAS  Google Scholar 

  41. Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y et al 2016 RSC Adv. 6 71534

    Article  CAS  Google Scholar 

  42. Yao Y, Ao K, Lv P and Wei Q 2019 Nanomaterials 9 844

    Article  CAS  Google Scholar 

  43. Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y et al 2017 Chin. J. Catal. 38 597

    Article  CAS  Google Scholar 

  44. Fan X, Xu P, Zhou D, Sun Y, Li Y C, Nguyen M A T et al 2015 Nano Lett. 15 5956

    Article  CAS  Google Scholar 

  45. Liu M, Shi J, Li Y, Zhou X, Ma D, Qi Y et al 2017 Small 13 1602967

    Article  Google Scholar 

  46. Pankove J 1975 Phys. Rev. Lett. 34 809

    Article  CAS  Google Scholar 

  47. Kubelka P and Munk F 1931 Z. Tech. Phys. 12 193

    Google Scholar 

  48. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y et al 2010 Nano Lett. 10 1271

    Article  CAS  Google Scholar 

  49. Wang C and Wang Y 2013 IEEE 2013 Chinese Automation Congress (CAC) p 858

  50. Baby M and Kumar K R 2021IOP Publishing J. Phys. Conf. Ser. p 012095

Download references

Acknowledgement

We thank the National Research Centre (NRC) for financial support through the internal project No.: 12020228.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Obaida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obaida, M., Hassan, S.A., Swelam, M.N. et al. Phase manipulation of two-dimensional MoS2 nanostructures. Bull Mater Sci 46, 40 (2023). https://doi.org/10.1007/s12034-023-02891-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02891-w

Keywords

Navigation