Skip to main content
Log in

Combustion synthesis of mechanically activated powders in the Ti–Si system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of the mechanical activation of the reactants on the self-propagating high-temperature synthesis (SHS) of titanium silicides was investigated. SHS experiments were performed on reactant powders that were milled for different times. Mechanical activation was shown to have a large influence on the combustion characteristics, particularly on wave speed. A much weaker effect was observed on the products phase composition. Single-phase products were obtained only from Ti:Si = 1:2 and Ti:Si = 5:3 starting compositions. Observation of microstructural evolution in quenched reactions of Ti:Si = 1:2 mixtures milled for relatively long times revealed that the combustion reaction was primarily a solid-state process restricted to a surface layer of the large Ti grains. A secondary process involving a solid–liquid interaction between solid Ti and melted Si was dominant in the post front region. The mechanical activation in this case took the role of increasing the contact surface between the reactants. A single reaction coalescence mechanism involving only liquid phases was proposed for the Ti:Si = 5:3 composition. For this composition the apparent activation energy for the overall combustion process was determined (155 kJ mol−1) and was shown to be independent on the degree of mechanical activation of the reactants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Sarkisyan, S.K. Dolukhanyan, I.P. Borovinskaya, and A.G. Merzhanov, Combust. Explos. Shock Waves 14, 49 (1978).

    Article  CAS  Google Scholar 

  2. A.R. Sarkisyan, S.K. Dolukhanyan, and I.P. Borovinskaya, Sov. Powder Metall. Met. Ceram. (Engl. Transl.) 186, 424 (1978).

    Article  Google Scholar 

  3. A.R. Sarkisyan, S.K. Dolukhanyan, and I.P. Borovinskaya, Combust. Explos. Shock Waves 15, 95 (1979).

    Article  Google Scholar 

  4. S. Zhang and Z.A. Munir, J. Mater. Sci. 26, 3685 (1991).

    Article  CAS  Google Scholar 

  5. S. Deevi, Mater. Sci. Eng. A 149, 241 (1992).

    Article  Google Scholar 

  6. S.B. Bhaduri, R. Radhakrishnan, and Z.B. Qian, Scripta Metall. Mater. 29, 1089 (1993).

    Article  CAS  Google Scholar 

  7. J. Subrahmanyam and R. Mohan Rao, Mater. Sci. Eng. A 183, 205 (1994).

    Article  CAS  Google Scholar 

  8. N. Bertolino, U. Anselmi-Tamburini, F. Maglia, G. Spinolo, and Z.A. Munir, J. Alloys Compd. 288, 238 (1999).

    Article  CAS  Google Scholar 

  9. F. Maglia, U. Anselmi-Tamburini, N. Bertolino, C. Milanese, and Z.A. Munir, J. Mater. Res. 15, 1098 (2000).

    Article  CAS  Google Scholar 

  10. A. Feng and Z.A. Munir, J. Appl. Phys. 76, 1927 (1994).

    Article  CAS  Google Scholar 

  11. B.K. Yen, T. Aizawa, and J. Kihara, J. Am. Ceram. Soc. 81, 1953 (1998).

    Article  CAS  Google Scholar 

  12. F. Bernard, F. Charlot, E. Gaffet, and J.C. Niepce, Int. J. Self-Propag. High-Temp. Synth. 7, 253 (1998).

    Google Scholar 

  13. G.B. Schaffer and P.G. McCormick, Scripta Metall. 23, 835 (1989).

    Article  CAS  Google Scholar 

  14. M. Atzmon, Phys. Rev. Lett. 64, 487 (1990).

    Article  CAS  Google Scholar 

  15. A.A. Popovich, V.P. Reva, V.N. Vasilenko, and O.A. Belous, Mater. Sci. Forum 88–90, 737 (1992).

    Article  Google Scholar 

  16. E. Ma, J. Pagan, G. Cranford, and M. Atzmon, J. Mater. Res. 8, 1836 (1993).

    Article  CAS  Google Scholar 

  17. L. Takacs, J. Solid State Chem. 125, 75 (1996).

    Article  CAS  Google Scholar 

  18. L. Takacs, Mater. Sci. Forum 269–272, 513 (1998).

    Article  Google Scholar 

  19. Z.A. Munir, F. Charlot, F. Bernard, and E. Gaffet, U.S. Patent Application Serial No. 09 374 049 (August 13, 1999).

  20. A.S. Rogachev, V.A. Shugaev, I.O. Khomenko, A. Varma, and C.R. Kachelmyer, Combust. Sci. Technol. 109, 53 (1995).

    Article  CAS  Google Scholar 

  21. J. Trambukis and Z.A. Munir, J. Am. Ceram. Soc. 73, 1240 (1990).

    Article  CAS  Google Scholar 

  22. L.L. Wang and Z.A. Munir, Metall. Mater. Trans. 26B, 595 (1995).

    Article  CAS  Google Scholar 

  23. Binary Alloy Phase Diagram, edited by T.B. Massalski (American Society for Metals, Metals Park, OH 44073, 1986), Vol. 2.

  24. M.E. Schlesinger, Chem. Rev. 90, 607 (1990).

    Article  CAS  Google Scholar 

  25. T.S. Azatyan, V.M. Mal’tsev, A.G. Merzhanov, and V.A. Seleznev, Combust. Explos. Shock Wave (Engl. Trans.) 15, 35 (1979).

    Article  Google Scholar 

  26. S.B. Bhaduri, R. Radhakrishnan, and Z.B. Qian, Scripta Metall. Mater. 29, 1089 (1993).

    Article  CAS  Google Scholar 

  27. S. Doppiu, M. Monagheddu, G. Cocco, F. Maglia, U. Anselmi-Tamburini, and Z.A. Munir (submitted for publication).

  28. Z.H. Yan, M. Oehring, and R. Bormann, J. Appl. Phys. 72, 2478 (1992).

    Article  CAS  Google Scholar 

  29. M. Oehring, Z.H. Yan, T. Klassen, and R. Bormann, Phys. Status Solidi 131, 671 (1992).

    Article  CAS  Google Scholar 

  30. Y.H. Park and H. Hashimoto, Mater. Sci. Eng. A181/A182, 1212 (1994).

    Article  Google Scholar 

  31. A.P. Radinskly and A. Calka, Mater. Sci. Eng. A134, 1376 (1991).

    Google Scholar 

  32. B.K. Yen, J. Appl. Phys. 81, 7061 (1997).

    Article  CAS  Google Scholar 

  33. Z.A. Munir and U. Anselmi-Tamburini, Mater. Sci. Rep. 3, 277 (1989).

    Article  CAS  Google Scholar 

  34. B.V. Cockeram and R.A. Rapp, Metall. Mater. Trans. 26A, 777 (1995).

    Article  CAS  Google Scholar 

  35. G.V. Samsonov and I.M. Vinitskii, Handbook of Refractory Compounds (Plenum, New York, 1980) p. 555.

  36. R. Orru, J. Woolman, G. Cao, and Z.A. Munir, (unpublished).

  37. J. Räisänen and J. Keinonen, Appl. Phys. Lett. 49, 773 (1986).

    Article  Google Scholar 

  38. A.P. Aldushin and B.I. Khaikin, Comb. Expl. Shock Waves 10, 273 (1973).

    Article  Google Scholar 

  39. A.P. Hart and P.V. Phung, Comb. Flame 21, 77 (1973).

    Article  Google Scholar 

  40. R. Armstrong and M. Koszykowski, in Combustion and Plasma Synthesis of High Temperature Materials, edited by Z.A. Munir and J.B. Holt (VCH, New York, 1990).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Anselmi-Tamburini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglia, F., Anselmi-Tamburini, U., Cocco, G. et al. Combustion synthesis of mechanically activated powders in the Ti–Si system. Journal of Materials Research 16, 1074–1082 (2001). https://doi.org/10.1557/JMR.2001.0149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0149

Navigation