Skip to main content
Log in

The kinetics of multilayered titanium-silicide coatings grown by the pack cementation method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The halide-activated, pack cementation coating method is a viable technique for forming silicide diffusion coatings that provide oxidation resistance for titanium alloys at high temperature. In this study, growth rates were determined for the five-layered silicide coatings on commercially pure titanium grown at 950 ‡C, 1050 ‡C, and 1150 ‡C using three halide activators. Solid-state titanium-silicon diffusion couple experiments were also made to determine the diffusional growth rates for the five silicide phases. Based on a model for growth of multiple layers, solid-state diffusion controls the growth rates in all of the silicide layers for coatings formed by packs with the less stable AlF3 and CuF2 activators. However, the growth of TiSi2 was influenced by gas-phase transport for coatings formed using the more stable MgF2 activator. The growth rates of the layers (TiSi2, TiSi, Ti5Si4, Ti5Si3, and Ti3Si) are parabolic; by assuming solid-state dif-fusion control, the diffusion coefficients in these phases were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kofstad:High Temperature Corrosion, Elsevier, New York, NY, 1988, pp. 289–99.

    Google Scholar 

  2. T.B. Massalski, J.L. Murray, L.H. Bennet, H. Baker, and L. Kacprzal, eds.,Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, 1986, p. 2056.

    Google Scholar 

  3. Z. Liu and G. Welsch:Metall. Trans. A, 1988, vol. 19A, pp. 527–42.

    CAS  Google Scholar 

  4. S.J. Balsone:Oxidation of High-Temperature Intermetallics, T. Grobstein and J. Doychak, eds., TMS, Warrendale, PA, 1989, pp. 219–34.

    Google Scholar 

  5. K.L. Luthra:Oxid. Met., 1991, vol. 36, pp. 475–90.

    Article  CAS  Google Scholar 

  6. A. Rahmel and P.J. Spencer:Oxid. Met., 1991, vol. 35, pp. 53–68.

    Article  CAS  Google Scholar 

  7. A. Abba, A. Galerie, and M. Caillet:Oxid. Met., 1982, vol. 17, pp. 43–54.

    Article  CAS  Google Scholar 

  8. S. Becker, A. Rahmel, M. Schorr, and M. Schütze:Oxid. Met., 1992, vol. 38, pp. 425–64.

    Article  CAS  Google Scholar 

  9. S.R. Murarka:Silicides for VLSI Applications, Academic Press, New York, NY, 1983, pp. 3–50.

    Google Scholar 

  10. J. Guille, L. Matini, and A. Clauss:Titanium Science and Technology: Proc. 5th Int. Conf. on Titanium, Oberursel, Munich, 1985, pp. 973–77.

    Google Scholar 

  11. J.-R. Chen, Y.-C. Liu, and S.-D. Chu:J. Electron. Mater., 1982, vol. 11, pp. 355–89.

    Article  CAS  Google Scholar 

  12. M. Bartur and M.-A. Nicolet:J. Electrochem. Soc., 1984, vol. 131, pp. 371–75.

    Article  CAS  Google Scholar 

  13. L.S. Hung, J. Gyulai, S.S. Lau, M.-A. Nicolet, and J.W. Mayer:J. Appl. Phys., 1983, vol. 54, pp. 5076–80.

    Article  CAS  Google Scholar 

  14. P. Revesz, J. Gyimesi, L. Pogany, and G. Peto:J. Appl. Phys., 1983, vol. 54, pp. 2114–15.

    Article  CAS  Google Scholar 

  15. S.A. Chambers, D.M. Hill, F. Xu, and J.H. Weaver:Phys. Rev. B, 1987, vol. 35, pp. 634–40.

    Article  CAS  Google Scholar 

  16. R. Bianco, M.A. Harper, and R.A. Rapp:JOM, 1991, vol. 43 (11), pp. 20–25.

    Google Scholar 

  17. C. Wagner:Z. Phys. Chem., 1969, vol. 64, pp. 49–53.

    CAS  Google Scholar 

  18. S.R. Levine and R.M. Caves:J. Electrochem. Soc., 1974, vol. 121, pp. 1051–64.

    CAS  Google Scholar 

  19. R. Bianco and R.A. Rapp:J. Electrochem. Soc., 1993, vol. 140, pp. 1181–90.

    Article  CAS  Google Scholar 

  20. A. Mueller, G. Wang, R.A. Rapp, and E.L. Courtright:J. Electrochem. Soc., 1992, vol. 139, pp. 1266–75.

    Article  CAS  Google Scholar 

  21. S.C. Kung and R.A. Rapp:Oxid. Met., 1989, vol. 32, pp. 89–109.

    Article  CAS  Google Scholar 

  22. B.K. Gupta, A.K. Sarkhel, and L.L. Seigle:Thin Solid Films, 1976, vol. 39, pp. 313–20.

    Article  CAS  Google Scholar 

  23. A.J. Hickl and R.W. Heckel:Metall. Trans. A, 1975, vol. 6A, pp. 431–40.

    CAS  Google Scholar 

  24. C. Wagner:Z. Phys. Chem. B, 1993, vol. B21, pp. 25–41.

    Google Scholar 

  25. J.L. Smialek, M.A. Gedwill, and P.K. Brindley:Scripta Metall., 1990, vol. 24, pp. 1291–96.

    Article  CAS  Google Scholar 

  26. H.S. Yang, W.B. Lee, and A.K. Mukherjee:Proc. 1st Int. Symp. on Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 69–76.

    Google Scholar 

  27. M.W. Chase, Jr., C.A. Davis, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud: JANAF Thermodynamical Tables, 3rd ed.,J. Phys. Chem. Ref. Data, 1985, vol. 14 (1), pp. 60–1108.

    Google Scholar 

  28. L.B. Pankratz:Thermodynamic Properties of Halides, U.S. Bureau of Mines Bull., U.S. Government Printing Office, Washington, DC, 1984, vol. 674, pp. 7–399.

    Google Scholar 

  29. G. Erikson:Acta Chem. Scand., 1971, vol. 25, pp. 2651–58.

    Article  Google Scholar 

  30. W.K. Chu, H. Krautle, J.W. Mayer, H. Muller, M.A. Nicolet, and K.N. Tu:J. Appl. Phys., 1974, vol. 25, pp. 454–57.

    CAS  Google Scholar 

  31. R.A. Rapp:Metall. Trans. A, 1984, vol. 15A, pp. 765–82.

    CAS  Google Scholar 

  32. J. Philibert:Atom Movements, Diffusion and Mass Transport in Solids, Les Editions de Physique, France, 1991, pp. 251–69, pp. 377–81,437–42.

    Google Scholar 

  33. C. Wagner:Acta Metall., 1969, vol. 17, pp. 99–107.

    Article  CAS  Google Scholar 

  34. G.V. Kidson:J. Nucl. Mater., 1961, vol. 3, pp. 21–29.

    Article  CAS  Google Scholar 

  35. G.J. Yurek, J.P. Hirth, and R.A. Rapp:Oxid. Met., 1974, vol. 8, pp. 265–81.

    Article  CAS  Google Scholar 

  36. H.S. Hsu:Oxid. Met., 1986, vol. 26, pp. 315–32.

    Article  CAS  Google Scholar 

  37. G. Wang, B. Gleeson, and D.L. Douglass:Oxid. Met., 1989, vol. 31, pp. 415–29.

    Article  CAS  Google Scholar 

  38. D.S. Williams, R.A. Rapp, and J.P. Hirth:Metall. Trans. A, 1981, vol. 12A, pp. 639–52.

    Google Scholar 

  39. S.R. Shatynski, J.P. Hirth, and R.A. Rapp:Acta Metall., 1975, vol. 24, pp. 1071–78.

    Google Scholar 

  40. J. Engqvist, C. Myers, and J. Carlsson:J. Electrochem. Soc., 1992, vol. 139, pp. 3197–3205.

    Article  CAS  Google Scholar 

  41. R.E. Walpole and R.H. Myers:Probability and Statistics for Engineers and Scientists, 4th ed., Macmillan, New York, NY, 1989, pp. 370–75.

    Google Scholar 

  42. P. Shewmon:Diffusion in Solids, 2nd ed., TMS, Warrendale, PA, 1989, pp. 191–200.

    Google Scholar 

  43. J.G.M. Becht, F.J.J. van Loo, and R. Metselaar:React. Solids, 1988, vol. 6, pp. 45–59.

    Article  CAS  Google Scholar 

  44. F.J.J. van Loo:Prog. Solid State Chem., 1990, vol. 20, pp. 47–99.

    Article  Google Scholar 

  45. S.P. Murarka and D.B. Fraser:J. Appl. Phys., 1980, vol. 51, pp. 342–49.

    Article  CAS  Google Scholar 

  46. B. Cockeram: Ph.D. Thesis, The Ohio State University, Columbus, OH, 1994, pp. 343–44.

    Google Scholar 

  47. C. Wagner:Corros. Sci., 1965, vol. 5, pp. 751–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

BRIAN V. COCKERAM, formerly Graduate Student with The Ohio State University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockeram, B.V., Rapp, R.A. The kinetics of multilayered titanium-silicide coatings grown by the pack cementation method. Metall Mater Trans A 26, 777–791 (1995). https://doi.org/10.1007/BF02649076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649076

Keywords

Navigation