Skip to main content
Log in

Direct measurement of mechanical properties of (Pb,La)TiO3 ferroelectric thin films using nanoindentation techniques

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A procedure using nanoindentation with spherical tipped indenters is presented that allows separation of elastic, anelastic, and plastic contributions to the deformation of thin films. The procedure was demonstrated on a range of lanthanum-modified lead titanate (Pb,La)TiO3 (PTL) ferroelectric thin films. Indentation stiffness coefficients ranging from 110 to 147 GPa have been obtained depending on the microstructure and orientation of the PTL films. This coefficient was equivalent to (and so, can be directly compared with) Young’s modulus of a nontextured, unpoled ceramic when films do not present preferred orientation. The trends of the anelastic contribution with the thickness, structure, microstructure, and stress level at the film/substrate interface of the films were consistent with it being produced by ferroelastic domain wall movement. Pore compaction was a major mechanism of plastic deformation for the PTL films. Grain size also affected plastic deformation, probably as a consequence of its correlation with intergranular porosity. The technique has a high spatial resolution (contact area < 10 μm2 for the results presented here), which allowed the mechanical homogeneity of the films to be studied and inhomogeneities to be identified from their mechanical response (elastic, anelastic, and plastic).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Spearing, Acta Mater. 48, 179 (2000).

    Article  CAS  Google Scholar 

  2. P. Muralt, Integr. Ferroelectr. 17, 297 (1997).

    Article  CAS  Google Scholar 

  3. T. Itoh and T. Suga, Nanotechnology 4, 477 (1993).

    Article  Google Scholar 

  4. T. Fuji, S. Watanabe, M. Suzuki, and T. Fujiu, J. Vac. Sci. Technol. B 13, 1119 (1995).

    Article  Google Scholar 

  5. T. Itoh, C. Lee, J. Chu, and T. Suga, Proc. MEMS’97, Nagoya, Japan, 0-7803-3744-1/97 (Institute of Electrical and Electronic Engineers, 1997), p. 78.

  6. Ph. Luginbuhl, G.A. Racine, Ph. Lerch, B. Romanowicz, K.G. Brooks, N.F. de Rooij, Ph. Renaud, and N. Setter, Sens. Actuators, A 54, 530 (1996).

    CAS  Google Scholar 

  7. J.F. Shepard, Jr., P.J. Moses, and S. Troiler-McKinstry, Sens. Actuators, A 71, 133 (1998).

    CAS  Google Scholar 

  8. P. Muralt, A. Kholkin, M. Kohli, and T. Maeder, Sens. Actuators, A 53, 398 (1996).

    CAS  Google Scholar 

  9. T. Tuchiya, T. Itoh, G. Sasaki, and T. Suga, J. Ceram. Soc. Jpn. 104, 159 (1996).

    Article  CAS  Google Scholar 

  10. P. Muralt, M. Kohli, T. Maeder, A. Kholkin, K. Brooks, N. Setter, and R. Luthier, Sens. Actuators, A 48, 157 (1995).

    CAS  Google Scholar 

  11. G.A. Racine, P. Muralt, and M.A. Dubois, Smart Mater. Struct. 7, 404 (1998).

    Article  CAS  Google Scholar 

  12. M.V. Swain and J. Mencik, Thin Solid Films 253, 204 (1994).

    Article  CAS  Google Scholar 

  13. J. Mencik, D. Munz, E. Quandt, E.R. Weppelman, and M.V. Swain, J. Mater. Res. 12, 2475 (1997).

    Article  CAS  Google Scholar 

  14. J.S. Field and M.V. Swain, J. Mater. Res. 10, 101 (1995).

    Article  CAS  Google Scholar 

  15. A.B. Schaufele and K.H. Hardrtl, J. Am. Ceram. Soc. 79, 2637 (1996).

    Article  Google Scholar 

  16. M. Algueró, A.J. Bushby, M.J. Reece, M.L. Calzada, and L. Pardo, Intergr. Ferroelectr. (in press).

  17. M. Algueró, M.L. Calzada, L. Pardo, and A.L. Kholkin, Appl. Phys. A 71, 195 (2000).

    Google Scholar 

  18. A.L. Kholkin, E.L. Colla, A.K. Tagantsev, and D.V. Taylor, Appl. Phys. Lett. 69, 3602 (1996).

    Article  CAS  Google Scholar 

  19. M. Algueró, M.L. Calzada, L. Pardo, and E. Snoeck, J. Mater. Res. 14, 4570 (1999).

    Article  Google Scholar 

  20. M. Algueró, M.L. Calzada, C. Quintana, and L. Pardo, Appl. Phys. A 68, 583 (1999).

    Article  Google Scholar 

  21. M.L. Calzada. M. Algueró, and L. Pardo, J. Sol-Gel Sci. Technol. 13, 837 (1998).

    Article  CAS  Google Scholar 

  22. M. Algueró, M.L. Calzada, E. Snoeck, and L. Pardo, J. Eur. Ceram. Soc. 19, 1501 (1999).

    Article  Google Scholar 

  23. A.J. Bushby, Nondestr. Test. Eval. (in press).

  24. B.R. Lawn, J. Am. Ceram. Soc. 81, 1977 (1998).

    Article  CAS  Google Scholar 

  25. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  26. B. Jaffe, W.R. Cook, Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, U.K., 1971).

    Google Scholar 

  27. A.E. Giannakopoulos and S. Suresh, Acta Mater. 47, 2153 (1999).

    Article  CAS  Google Scholar 

  28. J. Ricote, D. Chateigner, G. Ripault, L. Pardo, M. Algueró, J. Mendiola, and M.L. Calzada, Ferroelectrics 241, 167 (2000).

    Article  Google Scholar 

  29. C.E. Millar, L. Pedersen, L. Pardo, J. Ricote, C. Alemany, B. Jiménez, G. Feuillard, and F. Janin, Proc. Electroceramics IV, Aachen, Germany, Sept. 5–7, edited by R. Waser, S. Hoffman, D. Bonnenberg, and Ch. Hoffman (1994), Vol. 11, p. 1083.

  30. T.Y. Tsui, J.V. Glassak, and W.D. Nix. J. Mater. Res. 14, 2196 (1999).

    Article  CAS  Google Scholar 

  31. M. Algueró, M.L. Calzada, and L. Pardo, J. Mater. Res. 14, 4302 (1999).

    Article  Google Scholar 

  32. K.G. Brooks, I.M. Reaney, R. Klissurka, Y. Huang, L. Bursill, and N. Setter, J. Mater. Res. 9, 2540 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algueró, M., Bushby, A.J. & Reece, M.J. Direct measurement of mechanical properties of (Pb,La)TiO3 ferroelectric thin films using nanoindentation techniques. Journal of Materials Research 16, 993–1002 (2001). https://doi.org/10.1557/JMR.2001.0140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0140

Navigation