Skip to main content
Log in

Mechanical and water barrier properties of corn-protein-based biodegradable plastics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Experiments were performed to evaluate the mechanical and water barrier properties of corn-protein-based materials that were compression molded from thermoplastic resins. The influence of varying concentrations of water, glycerol, and octanoic acid was studied. At 0% relative humidity, the material exhibited a linear elastic deformation and a brittle fracture at any glycerol or octanoic acid content. Raising relative humidity from 0% to 97.3%, progressively decreased the tensile strength (from 24.1 to 2.2 MPa and 19.4 to 1.0 MPa), and the modulus of elasticity (from 1.67 to 0.03 GPa and 1.87 to 0.13 GPa), respectively, for the octanoic acid- or glycerol-plasticized materials. Increasing water content did not increase the tensile strain at break of the glycerol-plasticized material, whereas this parameter changed from 1.6 to 52.3% for octanoic-acid-plasticized material. This last material was waterproof during 21 h and its water transmission rate was then 0.05 mmolmm-2 s -1. Differences in water absorption were related to plasticizer solubility and material structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Gontard and S. Guilbert, in Food Packaging and Preservation, edited by M. Mathlouthi (Blackie Academic and Professional, Glasgow, 1994), pp. 159–181.

    Book  Google Scholar 

  2. C. Nawrath, Y. Poirier, and C. Somerville, Mol. Breed. 1, 105 (1995).

    Article  CAS  Google Scholar 

  3. A. Borcherding and T. Luck, in Plant Proteins from European Crops, Food and Non-Food Applications, edited by J. Guéguen and Y. Popineau (Springer-Verlag, Berlin, 1998), pp. 313–318.

    Book  Google Scholar 

  4. B. Cuq, N. Gontard, and S. Guilbert, Cereal Chem. 75, 1 (1998).

    Article  CAS  Google Scholar 

  5. S. Guilbert and J. Graille, in Valorisations non alimentaires des grandes productoins agricoles, Les colloques no. 71, edited by J. Gueguen (INRA Editions, Paris, 1994), pp. 195–206.

    Google Scholar 

  6. S.A. Watson, in Starch—Chemistry and Technology—II Industrial Aspects, edited by R.L. Whistler and E.F. Pashall (Academic Press, New York, 1967), pp. 1–51.

    Google Scholar 

  7. J. Landry, S. Delahaye, and L. Di Gioia, Cereal Chem. 76, 503 (1999).

    Article  CAS  Google Scholar 

  8. L. Di Gioia, B. Cuq, and S. Guilbert, Cereal Chem. 75, 514 (1998).

    Article  Google Scholar 

  9. L. Di Gioia, B. Cuq, and S. Guilbert, Int. J. Biol. Macromol. 24, 341 (1999).

    Article  Google Scholar 

  10. D.M. Rathmann, Zein, an Annoted Bibliography, 1891–1953, Mellon Institute Bibliographic Series, Bulletin No. 7, (Mellon Institute, Pittsburgh, 1954).

    Google Scholar 

  11. R.A. Reiners, J.S. Wall, and G.E. Inglett, in Industrial Uses of Cereals, edited by Y. Pomeranz (Symp. Proc. of the 58th annual meeting of AACC, St. Louis, MO, 1973), pp. 285–302.

    Google Scholar 

  12. L. di Gioia and S. Guilbert, J. Agric. Food Chem. 47, 1254 (1999).

    Article  Google Scholar 

  13. N. Hasegawa, K. Suzuki, T. Ishii, M. Hayashi, and G. Danno . Japanese Patent No. 6,192,577 (1994).

  14. J.K. Sears and J.R. Darby, The Technology and Plasticizers (Wiley Interscience, New York, 1982), pp. 35–77.

    Google Scholar 

  15. G. Galietta, L. di Gioia, S. Guilbert, and B. Cuq, J. Dairy Sci. 81, 3123 (1998).

    Article  CAS  Google Scholar 

  16. N. Gontard, S. Guilbert, and J-L. Cuq, J. Food Sci. 58, 206 (1993).

    Article  CAS  Google Scholar 

  17. H.M. Lai, G.W. Padua, and L.S. Wei, Cereal Chem. 74, 83 (1997).

    Article  CAS  Google Scholar 

  18. C.H. Schilling, T. Babcock, S. Wang, and J. Jane, J. Mater. Res. 10, 2197 (1995).

    Article  CAS  Google Scholar 

  19. N. Somanathan, V. Naresh, V. Arumugam, T.S. Ranganathan, and R. Sanjeevi, Polym. J. 24, 603 (1992).

    Article  CAS  Google Scholar 

  20. B. Cuq, N. Gontard, J-L. Cuq, and S. Guilbert, J. Agric. Food Chem. 45, 622 (1997).

    Article  CAS  Google Scholar 

  21. J-L. Jane, S-T. Lim, and I. Paetau, in Biodegradable Polymers and Packaging, edited by C. Ching, D.L. Kaplan, and E.L. Thomas (Technomic, Lancaster, United Kingdom, 1993), pp. 64–73.

    Google Scholar 

  22. ASTM, Annual Book of ASTM Standards (American Society for Testing and Material, Philadelphia, PA, 1989).

  23. J.W. Lawton, Cereal Chem. 69, 351 (1992).

    CAS  Google Scholar 

  24. H.M. Lai and G.W. Padua, Cereal Chem. 74, 771 (1997).

    Article  CAS  Google Scholar 

  25. H-D. Belitz, R. Kieffer, W. Seilmeier, and H. Wieser, Cereal Chem. 63, 336 (1986).

    CAS  Google Scholar 

  26. A.S. Herrmann, J. Nickel, and U. Riedel, Polym. Degrad. Stab. 59, 251 (1998).

    Article  CAS  Google Scholar 

  27. W. Woebcken, International Plastics Handbook, edited by J. Haim and D. Hyatt (Hanser Publishers, Munich, 1995).

    Google Scholar 

  28. L.C. Swallen, Ind. Eng. Chem. 33, 394 (1941).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Guilbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Gioia, L., Cuq, B. & Guilbert, S. Mechanical and water barrier properties of corn-protein-based biodegradable plastics. Journal of Materials Research 15, 2612–2619 (2000). https://doi.org/10.1557/JMR.2000.0375

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0375

Navigation