Skip to main content
Log in

Induction-field-activated self-propagating high-temperature synthesis of AlN–SiC solid solutions in the Si3N4–Al–C system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The synthesis of AlN–SiC solid solutions from Si3N4, Al, and C was investigated using the induction-field-activated/self-propagating high-temperature synthesis/static pseudo-isostatic compaction technique. Careful x-ray diffraction analyses were made on the products of combustion to determine reaction routes. Optical microscopy as well as scanning electron microscopy with an electron probe microanalysis was used for microstructural analysis. It was found that initially molten aluminum reacted with silicon nitride producing an Al–Si alloy. At higher temperatures, aluminum evaporated from the Al–Si liquid and the synthesis of AlN via a vapor phase process took place. Subsequently, dissolution of AlN into molten Si resulted in the formation of an AlN–SiC solid solution from the Al–N–Si–C liquid phase. However, below 1850 °C, the resulting solid solution of 4AlN–3SiC was not fully crystallized. Combustion temperatures above or equal to 1850 °C were required to prepare a highly crystallized solid solution with a morphology exhibiting hexagonal platelets. Based on these observations, a model for the formation of AlN–SiC solid solution is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Katsutoshi, J. Ceram. Soc. Jpn. 26, 8 (1991).

    Google Scholar 

  2. S. Ruckmich, A. Kranzmann, E. Bischoff, and R.J. Brook, J. Eur. Ceram. Soc. 7, 335 (1991).

    Article  CAS  Google Scholar 

  3. J. Lis, L. Stobierski, D. Kata, and J. Nawrocki, Polish Ceram. Bull. 15, 90 (1997).

    Google Scholar 

  4. Y. Kurokawa, K. Utsumi, and H. Takamizawa, J. Am. Ceram. Soc. 71, 588 (1988).

    Article  CAS  Google Scholar 

  5. A.H. Lubis, N.L. Hecht, G.A. Graves, Jr., and R. Ruh, J. Am. Ceram. Soc. 82, 2481 (1999).

    Article  CAS  Google Scholar 

  6. R. Ruh, A. Zangvil, and J. Barlowe, Am. Ceram. Soc. Bull. 64, 1368 (1985).

    CAS  Google Scholar 

  7. Z.C. Juo, S-Y. Kuo, and A.V. Virkar, J. Am. Ceram. Soc. 69, C279 (1986).

    Google Scholar 

  8. C.K. Unni and D.E. Gordon, J. Mater. Sci. 30, 1173 (1995).

    Article  CAS  Google Scholar 

  9. R. Ruh, A. Zangvil, and J. Barlowe, Am. Ceram. Soc. Bull. 64, 1368 (1985).

    CAS  Google Scholar 

  10. J.L. Huang and J.M. Jih, J. Am. Ceram. Soc. 79, 1262 (1996).

    Article  CAS  Google Scholar 

  11. S. Kuo, A. Virkar, and W. Rafaniello, J. Am. Ceram. Soc. 70, C125 (1987).

    Article  Google Scholar 

  12. R. Ruh and A. Zangvil, J. Am. Ceram. Soc. 65, 260 (1982).

    Article  CAS  Google Scholar 

  13. A. Zangvil and R. Ruh, Mater. Sci. Eng. 71, 159 (1985).

    Article  CAS  Google Scholar 

  14. Y.A. Vodakov and E.N. Mokhov, in Silicon Carbie—1973, edited by R.C. Marshall, J.W. Faust, Jr., and C.E. Ryan (University Press, SC 1974), pp. 508–519.

    Google Scholar 

  15. Y. Tajima and W.D. Kingery, J. Am. Ceram. Soc. 65, C27 (1982).

    Article  CAS  Google Scholar 

  16. D.P. Birnie, J. Am. Ceram. Soc. 69, C33 (1986).

    Article  Google Scholar 

  17. R. Pampuch, Ceramic Processing Science and Technology, edited by H. Hausner, G.L. Messing, and S. Hirano, (Ceram. Trans. 51, Am. Ceram. Soc., Westerville, OH, 1995), pp. 119–126.

    Google Scholar 

  18. A.G. Merzhanow, in Ceramics: Toward to 21st Century, edited by N. Soga and A. Kato, (Ceram. Soc. Jpn., Tokyo, Japan, 1991), pp. 378–403.

    Google Scholar 

  19. N. Balandina, M. Ohyanagi, and Z.A. Munir, Key Eng. Mater. 161–163, 91 (1998).

    Article  Google Scholar 

  20. M. Ohyanagi, K. Shirai, N. Balandina, M. Hisa, and Z.A. Munir, J. Am. Ceram. Soc. 83, 1108 (2000).

    Article  CAS  Google Scholar 

  21. M. Ohyanagi and Z.A. Munir, J. Korean Ceram. Soc. 2000, in press.

  22. Z.A. Munir, Int. J. SHS 6, 165 (1997).

    CAS  Google Scholar 

  23. H. Xue and Z.A. Munir, Scripta Metall. Mater. 35, 979 (1996).

    Article  CAS  Google Scholar 

  24. H. Xue and Z.A. Munir, J. Eur. Ceram. Soc. 17, 1787 (1997).

    Article  CAS  Google Scholar 

  25. D. Kata, K. Shirai, M. Ohyanagi, and Z.A. Munir, J. Am. Ceram. Soc. 2000, in press.

  26. M. Ohyanagi, T. Takayuki, M. Koizuni, and Z.A. Munir, Proc. of 1st Russia–Japan Workshop on SHS, Karlovy Vary, Czech Republic, Oct. 30–Nov. 3, (1998), pp. 65–69.

  27. O. Yamada, K. Hirao, M. Koizumi, and Y. Miyamoto, J. Am. Ceram. Soc. 72, 1735 (1989).

    Article  CAS  Google Scholar 

  28. D. Kata, J. Lis, and R. Pampuch, Solid State Ionics 101, 65 (1997).

    Google Scholar 

  29. D. Kata, J. Lis, R. Pampuch, and L. Stobierski, Int. J. SHS 7, 475 (1998).

    CAS  Google Scholar 

  30. Ternary Alloys, A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, edited by G. Petzow and G. Effenberg (Weinheim, New York, 1988), p. 7.

  31. J.C. Viala, P. Fortier, and J. Bouix, J. Mater. Sci. 25, 1842 (1990).

    Article  CAS  Google Scholar 

  32. A.C. Ferro and B. Derby, Acta Metall. Mater. 43, 3061 (1995).

    Article  CAS  Google Scholar 

  33. A.C. Ferro and B. Derby, J. Mater. Sci. 30, 6119 (1995).

    Article  CAS  Google Scholar 

  34. Handbook of Ternary Alloy Phase Diagrams (ASM International, 1995).

  35. W. Kurz and D.J. Fisher, Fundametnals of Solidification (Trans. Tech., Aedermannsdorf, (1989), pp. 122–129.

    Google Scholar 

  36. H.A. Wriedt, Handbook of the APD Program.

  37. W. Kaiser and C.D. Thurmond, J. Appl. Phys. 30, 427 (1959).

    Article  CAS  Google Scholar 

  38. T. Narushima, N. Ueda, M. Takeuchi, F. Ishii, and Y. Iguchi, Mater. Trans. 35, 821 (1994).

    Article  CAS  Google Scholar 

  39. L.L. Oden and R.A. McCune, Metal. Trans. 18A, 2005 (1987).

    Article  CAS  Google Scholar 

  40. R.I. Scace and G.A. Slack, J. Chem. Phys. 30, 1551 (1959).

    Article  CAS  Google Scholar 

  41. E.M. Carrillo-Heian, H. Xue, M. Ohyanagi, and Z.A. Munir, J. Am. Ceram. Soc. 83, 1103 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kata, D., Ohyanagi, M. & Munir, Z.A. Induction-field-activated self-propagating high-temperature synthesis of AlN–SiC solid solutions in the Si3N4–Al–C system. Journal of Materials Research 15, 2514–2525 (2000). https://doi.org/10.1557/JMR.2000.0361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0361

Navigation