Skip to main content
Log in

Difficulties in measuring electrical conductivities in highly insulating materials: Radiation-induced electrical degradation is an artifact

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Measurement of the electrical conductivity in high-resistance insulators is made difficult by previously unrecognized limits in the electric guarding technique. Electron irradiation experiments on single-crystalline Al2O3, performed for studying the effects of irradiation on the electrical conductivity, revealed that radiation-induced electrical degradation effects in ceramic insulators, previously reported to occur after electron, ion, and neutron irradiation, are an artifact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.W. Hobbs, F.W. Clinard, Jr., S.J. Zinkle, and R.C. Ewing, J. Nucl. Mater. 216, 291 (1994).

    Article  CAS  Google Scholar 

  2. S.J. Zinkle and E.R. Hodgson, J. Nucl. Mater. 191–194, 58 (1992).

    Article  Google Scholar 

  3. C. Kinoshita and S.J. Zinkle, J. Nucl. Mater. 233–237, 100 (1996).

    Article  Google Scholar 

  4. E.R. Hodgson, Cryst. Lattice Defects Amorphous Mater. 18, 169 (1989).

    CAS  Google Scholar 

  5. E.R. Hodgson, J. Nucl. Mater. 179–181, 383 (1991).

    Article  Google Scholar 

  6. E.R. Hodgson, Radiat. Eff. Defects Solids 119–121, 827 (1991).

    Article  Google Scholar 

  7. E.R. Hodgson, Nucl. Instrum. Methods Phys. Res. B 65, 298 (1992).

    Article  Google Scholar 

  8. E.R. Hodgson, J. Nucl. Mater. 191–194, 552 (1992).

    Article  Google Scholar 

  9. E.R. Hodgson, in Defects in Insulating Materials, edited by O. Kanert and J-M. Spaeth (World Scientific, New York, 1993), Vol. 2, p. 332.

    Google Scholar 

  10. G.P. Pells, J. Nucl. Mater. 184, 177 (1991).

    Article  CAS  Google Scholar 

  11. T. Shikama, M. Narui, Y. Endo, T. Sagawa, and H. Kayano, J. Nucl. Mater. 191–194, 575 (1992).

    Article  Google Scholar 

  12. W. Kesternich, F. Scheuermann, and S.J. Zinkle, J. Nucl. Mater. 206, 68 (1993).

    Article  CAS  Google Scholar 

  13. A. Morono and E.R. Hodgson, J. Nucl. Mater. 212–215, 1119 (1994).

    Article  Google Scholar 

  14. E.R. Hodgson, J. Nucl. Mater. 212–215, 1123 (1994).

    Article  Google Scholar 

  15. P. Jung, Z. Zhu, and H. Klein, J. Nucl. Mater. 206, 72 (1993).

    Article  CAS  Google Scholar 

  16. X-F. Zong, C-F. Shen, S. Liu, Z-C. Wu, Y. Chen, B.D. Evans, R. Gonzales, and C.H. Sellers, Phys. Rev. B 49, 15514 (1994).

    Article  CAS  Google Scholar 

  17. X-F. Zong, C-F. Shen, S. Liu, Z-C. Wu, Y. Chen, R. Zhang, J.G. Zhu, Y. Chen, B.D. Evans, R. Gonzales, and C.H. Sellers, J. Nucl, Mater. 219, 176 (1995).

    Article  CAS  Google Scholar 

  18. X-F. Zong, C-F. Shen, S. Liu, Y. Chen, R. Zhang, Y. Chen, J.G. Zhu, B.D. Evans, and R. Gonzales, Phys. Rev. B 54, 139 (1996).

    Article  CAS  Google Scholar 

  19. E.H. Farnum, F.W. Clinard, Jr., W.F. Sommer, J.C. Kennedy, and T. Shikama, J. Nucl. Mater. 212–215, 1128 (1994).

    Article  Google Scholar 

  20. E.H. Farnum and F.W. Clinard, Jr., J. Nucl. Mater. 219, 161 (1995).

    Article  CAS  Google Scholar 

  21. E.H. Farnum, T. Shikama, M. Narui, T. Sagawa, and K. Scarborough, J. Nucl. Mater. 228, 117 (1996).

    Article  CAS  Google Scholar 

  22. T. Shikama, M. Narui, H. Kayano, and T. Sagawa, J. Nucl. Mater. 212–215, 1133 (1994).

    Article  Google Scholar 

  23. G.P. Pells and B.C. Sowden, J. Nucl. Mater. 223, 174 (1995).

    Article  CAS  Google Scholar 

  24. G.P. Pells and E.R. Hodgson, J. Nucl. Mater. 226, 286 (1995).

    Article  CAS  Google Scholar 

  25. W. Kesternich, F. Scheuermann, and S.J. Zinkle, J. Nucl. Mater. 219, 190 (1995).

    Article  CAS  Google Scholar 

  26. F. Scheuermann and W. Kesternich, Proceedings of the Fourth International Conference on Electroceramics and Applications, Aachen, Germany, 1994, Vol. 2, p. 1119.

  27. W. Kesternich, J. Nucl. Mater. 253, 167 (1998).

    Article  CAS  Google Scholar 

  28. W. Kesternich, J. Appl. Phys. 85, 748 (1999).

    Article  CAS  Google Scholar 

  29. B.D. Evans, J. Nucl. Mater. 219, 202 (1995).

    Article  CAS  Google Scholar 

  30. A. Möslang, E. Daum, and R. Lindau, Proceedings of the 18th Symposium of Fusion Technology, Karlsruhe, Germany, August 22–26, 1995, p. 131.

    Google Scholar 

  31. J.D. Hunn, R.E. Stoller, and S.J. Zinkle, J. Nucl. Mater. 219, 169 (1995).

    Article  CAS  Google Scholar 

  32. S.J. Zinkle, J.D. Hunn, and R.E. Stoller, in Microstructure of Irradiated Materials, edited by I.M. Robertson, S.J. Zinkle, L.E. Rehn, and W.J. Phythian (Mater. Res. Soc. Symp. Proc. 373, Pittsburgh , PA, 1995), p. 299.

  33. L.L. Snead, D.P. White, and S.J. Zinkle, J. Nucl. Mater. 226, 58 (1995).

    Article  CAS  Google Scholar 

  34. C. Patuwathavithane, W.Y. Wu, and R.H. Zee, J. Nucl. Mater. 225, 328 (1995).

    Article  CAS  Google Scholar 

  35. A. Morono and E.R. Hodgson, J. Nucl. Mater. 233–237, 1299 (1996).

    Article  Google Scholar 

  36. K. Shiiyama, T. Izu, C. Kinosita, and M. Kutsuwada, J. Nucl. Mater. 233–237, 1332 (1996).

    Article  Google Scholar 

  37. T. Terai, T. Kobayashi, T. Yoneoka, and S. Tanaka, Nucl. Instrum. Methods Phys. Res. B 116, 294 (1996).

    Article  CAS  Google Scholar 

  38. S.J. Zinkle, W.S. Eatherly, L.L. Snead, T. Shikama, and K. Shiiyama, Fusion Reactor Semiannual Prog. Rep. DOE/ER-0313/22, 197, p. 188.

  39. A. Möslang, IEA Workshop on Radiation Effects in Ceramic Insulators, Cincinnati, OH, (1997) Proc., edited by S.J. Zinkle, E.R. Hodgson, and T. Shikama, Report ORNL/M-6068 (Oak Ridge National Laboratory, Oak Ridge, TN).

  40. M.M.R. Howlader, C. Kinoshita, T. Izu, K. Shiiyama, and M. Kutsuwada, J. Nucl. Mater. 239, 245 (1996).

    Article  CAS  Google Scholar 

  41. D.P. White, L.L. Snead, S.J. Zinkle, and W.S. Eatherly, J. Appl. Phys. 93, 1924 (1998).

    Article  Google Scholar 

  42. T. Tanufuji, Y. Katano, T. Nakazawa, and K. Noda, J. Nucl. Mater. 253, 156 (1998).

    Article  Google Scholar 

  43. Ninth IEA Workshop on Radiation Effects in Ceramic Insulators, Cincinnati, OH (1997) Proc., edited by S.J. Zinkle, E.R. Hodgson, and T. Shikama, Report ORNL/M-6068 (Oak Ridge National Laboratory, Oak Ridge, TN).

  44. ASTM Standard Test Methods for DC Resistance or Conductance of Insulating Materials, D-257-91 (American Society for Testing and Materials, Philadelphia, PA 1991).

  45. F.G. Will and K.H. Janora, J. Am. Ceram. Soc. 75, 2795 (1992).

    Article  CAS  Google Scholar 

  46. Yok Chen (private communication).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesternich, W. Difficulties in measuring electrical conductivities in highly insulating materials: Radiation-induced electrical degradation is an artifact. Journal of Materials Research 15, 2280–2283 (2000). https://doi.org/10.1557/JMR.2000.0326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0326

Navigation