Skip to main content
Log in

Voids in Silicon by He Implantation: From Basic to Applications

  • Commentaries and Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanism of bubble formation when He is implanted into silicon is described. Many experiments are reviewed and several techniques are considered. During implantation and subsequent annealing, complex Hen–Vm clusters are formed, trapping vacancies, while Si self-interstitials recombine directly at the surface. By increasing temperature He atoms out-diffuse, and the entire process produces a supersaturation of vacancies (void formation). Their evolution is studied during isothermal and isochronal annealing, describing the mechanisms involved; that is, direct coalescence or Ostwald ripening. The internal surface is an efficient trap for self-interstitials and for metals. The gettering mechanism is governed by a surface adsorption at low impurity concentration while at high value a silicide phase is observed. The high getter capability is ensured by the large number of traps introduced (1017–1019 cm−3). Finally, voids introduce mid gap energy levels that act as minority carrier recombination centers, providing a powerful method to control lifetime locally in silicon devices. The reviewed results demonstrate that the trap levels are due to the dangling bonds present on the void surface. This property can be used in many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blackburn, Metallurgical Review 11, 159 (1966).

    Google Scholar 

  2. S.E. Donnelly, Radiation Effects 90, 1 (1985).

    Article  CAS  Google Scholar 

  3. D.J. Reed, Radiation Effects 31, 129 (1977).

    Article  CAS  Google Scholar 

  4. R.G. Elliman, S.T. Johnson, K.T. Short, and J.S. Williams, in Ion Implantation and Ion Beam Processing of Materials, edited by G.K. Huber, D.W. Holland, C.R. Clayton, and C.W. White (Mater. Res. Soc. Symp. Proc. 27, North-Holland, New York, 1984), pp. 229–234.

  5. S.M. Myers, H.J. Stein, and D.M. Follstaedt, Phys. Rev. B 51, 9742 (1995).

    Article  CAS  Google Scholar 

  6. S.K. Das and M. Kaminsky, Adv. Chem. Ser. 158, 112 (1976).

    Article  CAS  Google Scholar 

  7. C.C. Griffioen, J.H. Evans, P.C. de Jong, and A. van Veen, Nucl. Instrum. Methods Phys. Res., Sect. B 27, 417 (1987).

    Article  Google Scholar 

  8. S.M. Myers, G.A. Petersen, and C.H. Seager, J. Appl. Phys. 80, 3717 (1966).

    Article  Google Scholar 

  9. V. Raineri, Solid State Phenomena, 57–58, 43 (1997).

    Article  Google Scholar 

  10. J. Wong-Leung, C.E. Ascheron, M. Petravic, R.G. Elliman, and J.S. Williams, Appl. Phys. Lett. 66, 1231 (1995).

    Article  CAS  Google Scholar 

  11. B. Mohadjeri, J.S. Williams, and J. Wong-Leung, Appl. Phys. Lett. 66, 1889 (1995).

    Article  CAS  Google Scholar 

  12. M.H.F. Overwijk, J. Politiek, R.C.M. de Kruif, and P.C. Zalm, Nucl. Instrum. Methods Phys. Res., Sect. B 96, 257 (1995).

    Article  CAS  Google Scholar 

  13. S.M. Myers and G.A. Petersen, Phys. Rev. B 57, 7015 (1998).

    Article  CAS  Google Scholar 

  14. V. Raineri and S.U. Campisano, Appl. Phys. Lett. 69, 1783 (1996).

    Article  CAS  Google Scholar 

  15. V. Raineri and S.U. Campisano, Nucl. Instrum. Methods Phys. Res., Sect. B 120, 56 (1996).

    Article  CAS  Google Scholar 

  16. C.H. Seager, S.M. Myers, R.A. Anderson, W.L. Warren, and D.M. Follstaedt, Phys. Rev. B 59, 2458 (1994).

    Article  Google Scholar 

  17. V. Raineri, P.G. Fallica, G. Percolla, A. Battaglia, M. Barbagallo, and S.U. Campisano, J. Appl. Phys. 78, 3727 (1995).

    Article  CAS  Google Scholar 

  18. M. Saggio, V. Raineri, R. Letor, and F. Frisina, IEEE Electron Device Lett. 18, 333 (1997).

    Article  CAS  Google Scholar 

  19. P.K. Chu, N.W. Cheung, Materials Chemistry and Physics 57, 1 (1998).

    Article  CAS  Google Scholar 

  20. M. Alatalo, M.J. Puska, and R.M. Nieminen, Phys. Rev. B 46, 12806 (1992).

    Article  CAS  Google Scholar 

  21. F. Corni, G. Calzolari, S. Frabboni, C. Nobili, G. Ottaviani, R. Tonini, G.F. Cerofolini, D. Leone, M. Servidori, R.S. Brusa, G.P. Karwasz, N. Tiengo, and A. Zecca, J. Appl. Phys. 85, 1401 (1999).

    Article  CAS  Google Scholar 

  22. R.S. Brusa, G.P. Karwasz, N. Tiengo, A. Zecca, F. Corni, G. Calzolari, and C. Nobili, J. Appl. Phys. 85, 2390 (1999).

    Article  CAS  Google Scholar 

  23. F. Corni, C. Nobili, G. Ottaviani, R. Tonini, G. Calzolari, G.F. Cerofolini, and G. Queirolo, Phys. Rev. B 56, 7331 (1997).

    Article  CAS  Google Scholar 

  24. R. Tonini, F. Corni, S. Frabboni, G. Ottaviani, and G.F. Cerofolini, J. Appl. Phys. 84, 4802 (1998).

    Article  CAS  Google Scholar 

  25. V. Raineri, S. Coffa, E. Szilágyi, J. Gyulai, and E. Rimini, Phys. Rev. B 61, 937 (2000).

    Article  CAS  Google Scholar 

  26. J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

    Google Scholar 

  27. G.F. Cerofolini, G. Calzolari, F. Corni, S. Frabboni, C. Nobili, G. Ottaviani, and R. Tonini, Phy. Rev. B 61, 10183 (2000).

    Article  CAS  Google Scholar 

  28. S.K. Estreicher, J. Weber, A. Derecskei-Kovacs, and D.S. Marynick, Phys. Rev. B 55, 5037 (1997).

    Article  CAS  Google Scholar 

  29. G. Davis, Phys. Rep. 176, 83 (1989).

    Article  Google Scholar 

  30. G. Davies, E.C. Lightowlers, and Z.F. Ciedanawaska, J. Phys. C: Solid State Phys. 20, 191 (1987).

    Article  CAS  Google Scholar 

  31. D.J. Reed, Radiation Effects 31, 129 (1977).

    Article  CAS  Google Scholar 

  32. M.K. Weldon, M. Collot, Y.J. Chabal, V.C. Venezia, A. Agarwal, T.E. Haynes, D.J. Eaglesham, S.B. Christman, and E.E. Chaban, Appl. Phys. Lett. 73, 3721 (1998).

    Article  CAS  Google Scholar 

  33. M.K. Bruel, Electron. Lett. 31, 1201 (1995).

    Article  CAS  Google Scholar 

  34. S. Libertino, J.L. Benton, D.C. Jacobson, D.J. Eaglesham, J.M. Poate, S. Coffa, P.G. Fuochi, and M. Lavalle, Appl. Phys. Lett. 71, 389 (1997).

    Article  CAS  Google Scholar 

  35. S. Libertino, S. Coffa, J.L. Benton, K. Halliburton, and D.J. Eaglesham, Nucl. Instrum. Methods Phys. Res., Sect. B 148, 247 (1999).

    Article  CAS  Google Scholar 

  36. J.L. Benton, S. Libertino, P. Kringoi, D.J. Eaglesham, J.M. Poate, and S. Coffa, J. Appl. Phys. 82, 120 (1997).

    Article  CAS  Google Scholar 

  37. F. Roqueta, A. Grob, J.J. Grob, R. Jerisian, J.P. Stoquert, and L. Ventura, Nucl. Instrum. Methods Phys. Res., Sect. B 147, 298 (1999).

    Article  CAS  Google Scholar 

  38. J.W. Christion, The Theory of Transformation in Metals and Alloys, 1st ed. (Pergamon Press, New York, 1965), Chap. X.

    Google Scholar 

  39. R.S. Brusa, G.P. Karwasz, N. Tiengo, A. Zecca, F. Corni, G. Calzolari, and C. Nobili, J. Appl. Phys. 85, 2390 (1999).

    Article  CAS  Google Scholar 

  40. J.P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968), p. 145.

    Google Scholar 

  41. P. Stolk, H.J. Gossmann, D.J. Eaglesham, D.C. Jacobson, C.S. Rafferty, G.H. Gilmer, M. Jaraiz, J.M. Poate, H.S. Luftman, and T.E. Haynes, J. Appl. Phys. 81, 6031 (1997).

    Article  CAS  Google Scholar 

  42. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  Google Scholar 

  43. D. Kaletta, Radiation Effects 78, 245 (1983).

    Article  CAS  Google Scholar 

  44. V. Raineri, M. Saggio, F. Frisina, and E. Rimini, in Proc. Ion Implantation Technology 1998 (IEEE, 1999), p. 130.

  45. D.M. Follstaedt, Appl. Phys. Lett. 62, 1116 (1993).

    Article  CAS  Google Scholar 

  46. D.J. Eaglesham, A.E. White, L.C. Feldman, N. Moriga, and D.C. Jacobson, Phys. Rev. Lett. 70, 1643 (1993).

    Article  CAS  Google Scholar 

  47. J.C. Heyraud and J.J. Metois, Surf. Sci. 128, 334 (1983).

    Article  CAS  Google Scholar 

  48. C. Herring, in Structure and Properties of Solid Surfaces, edited by R.G. Gomer and C.S. Smith (University of Chicago Press, Chicago, IL, 1953).

    Google Scholar 

  49. G. Wulff, Z. Kristallogr. Mineral 34, 449 (1901).

    CAS  Google Scholar 

  50. V. Raineri, S. Coffa, M. Saggio, F. Frisina, and E. Rimini, Nucl. Instrum. Methods Phys. Res., Sect. B 149, 292 (1999).

    Article  Google Scholar 

  51. S.M. Myers, D.M. Follstaedt, and D.M. Bishop, in Materials Synthesis and Processing Using Ion Beams, edited by R.S. Culbertson, O.W. Holland, K.S. Jones, and K. Maex (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, PA, 1994), pp. 33–38.

  52. J. Wong-Leung, E. Nygren, and J.S. Williams, Appl. Phys. Lett. 67, 416 (1995).

    Article  CAS  Google Scholar 

  53. S.M. Myers, D.M. Follstaedt, G.A. Petersen, C.H. Seager, H.J. Stein, and W.R. Wampler, Nucl. Instrum. Methods Phys. Res., Sect. B 106, 379 (1995).

    Article  CAS  Google Scholar 

  54. S.M. Myers and D.M. Follstaedt, J. Appl. Phys. 79, 1337 (1996).

    Article  CAS  Google Scholar 

  55. S.M. Myers, G.A. Petersen, D.M. Follstaedt, T.J. Headley, J.R. Michael, and C.H. Seager, Nucl. Instrum. Methods Phys. Res., Sect. B 43, 120 (1996).

    Google Scholar 

  56. V. Raineri, Solid State Phenomena 57–58, 43 (1997).

    Article  Google Scholar 

  57. A. Cacciato, C.M. Camalleri, G. Franco, V. Raineri, and S. Coffa, J. Appl. Phys. 80, 4322 (1996).

    Article  CAS  Google Scholar 

  58. R. Hoelzl, K.J. Range, L. Fabry, J. Hage, and V. Raineri, Mater. Sci. Eng. B 73, 95 (2000).

    Article  Google Scholar 

  59. S. Lombardo, A. Pinto, V. Raineri, P. Ward, G. La Rosa, G. Privitera, and S.U. Campisano, IEEE Electron Device Lett. 17, 485 (1996).

    Article  CAS  Google Scholar 

  60. F.J. Himpsel, Surf. Sci. Rep. 12, 1 (1990).

    Article  CAS  Google Scholar 

  61. V. Raineri, M. Saggio, F. Frisina, and E. Rimini, Solid State Electronics 42 (1998) 2295.

    Article  CAS  Google Scholar 

  62. V. Raineri, G. Fallica, and S. Libertino, J. Appl. Phys. 79, 9012 (1996).

    Article  CAS  Google Scholar 

  63. M. Catania, F. Frisina, N. Tavolo, G. Ferla, S. Coffa, and S.U. Campisano, IEEE Trans. Electron Devices 39, 2745 (1992).

    Article  Google Scholar 

  64. B. Jayant Baliga and E. Sun, IEEE Trans. Electron Devices 24, 685 (1977).

    Article  Google Scholar 

  65. A. Mogro-Campero, R.P. Love, M.F. Chang, and R. Dyer, IEEE Trans. Electron Devices 33, 1667 (1986).

    Article  Google Scholar 

  66. A. Hallen and M. Bakowsky, Solid State Electronics 32, 1033 (1989).

    Article  CAS  Google Scholar 

  67. Y. Konishi, Y. Onishi, S. Momota, and K. Sakurai, in Proc. IPSD’96, edited by C.A.T. Salama and R.K. Williams (IEEE, New Jersey, 1996).

    Google Scholar 

  68. S. Coffa, A. Magrì, F. Frisina, and V. Privitera, IEEE Trans. Electron Devices 43, 836 (1995).

    Article  Google Scholar 

  69. ATLAS User’s Guide, Ver. 4.0.3 (Silvaco, 1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raineri, V., Saggio, M. & Rimini, E. Voids in Silicon by He Implantation: From Basic to Applications. Journal of Materials Research 15, 1449–1477 (2000). https://doi.org/10.1557/JMR.2000.0211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0211

Navigation