Skip to main content
Log in

Preparation, Property, and Mechanism Studies of Amorphous Ferroelectric (Ba, Sr)TiO3 Thin Films for Novel Metal–ferroelectric–metal Type Hydrogen Gas Sensors

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ferroelectric(Ba0.67Sr0.33)TixO3 (BST) thin films with x = 0.98, 1.00, 1.02, and 1.04 were prepared by the sol-gel technology, and their thermal, structural, dielectric, and gas sensing properties were systematically characterized. The amorphous (Ba0.67Sr0.33)TixO3 thin film capacitive devices were made on Si substrate to detect hydrogen gas and to study hydrogen-induced interfacial polarization potential.Experimental results showed that the Schottky IV behavior appears in these Pd/amorphous BST thin film/metal capacitive devices and that enhanced interfacial dipole potentials as large as 4.5 V at 1000 ppm hydrogen gas in air were newly observed, which is about 7 times larger than the best value reported under similar testing conditions. It was clearly shown that the hydrogen-induced interfacial polarization potential is closely correlated with the microstructure of ferroelectric thin films and the enhancement of this interfacial polarization potential is mainly attributed to the high dielectric constant of amorphous ferroelectric thin films. A simple hydrogen interface-blocking model is also presented to explain this interesting phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott and C.A. Paz de Araiyo, Science 246, 1400 (1989).

    Article  CAS  Google Scholar 

  2. R. Moazzami and C. Hu, IEEE Trans. Electron Devices 39, 2044 (1992).

    Article  CAS  Google Scholar 

  3. W. Zhu, Z.Q. Liu, W. Lu, M.S. Tse, H.S. Tan, and X. Yao, J. Appl. Phys. 79, 4283 (1996).

    Article  CAS  Google Scholar 

  4. S. Aggarwal, S.R. Perusse, B. Nagaraj, and R. Ramesh, Appl. Phys. Lett. 74, 3023 (1999).

    Article  CAS  Google Scholar 

  5. C. Basceri, S.K. Streiffer, A.I. Lingon, and R. Waser, J. Appl. Phys. 82, 2497 (1997).

    Article  CAS  Google Scholar 

  6. J.F. Scott, Ferroelectr. Rev. 1, 1 (1998).

    Article  CAS  Google Scholar 

  7. J. Robertson and C.W. Chen, Appl. Phys. Lett. 74, 1168 (1999).

    Article  CAS  Google Scholar 

  8. B. Jaffe, W.R. Cook, Jr., and H. Jaffe, in Piezoelectric Ceramics (Academic Press, New York, 1971).

    Google Scholar 

  9. Ferroelectric Ceramics: Tutorial Review, Theory, Processing, and Applications, edited by N. Setter and E.L. Collar (Birkhauser Verlag, Basel, Switzerland, 1993).

    Google Scholar 

  10. J.M. Herbert, Ferroelectric Transducers and Sensors (Gordon and Breach, New York, 1980).

    Google Scholar 

  11. C.S. Hwang, S.O. Park, H.J. Cho, C.S. Kang, H.K. Kang, S.I. Lee, and M.Y. Lee, Appl. Phys. Lett. 67, 2819 (1995).

    Article  CAS  Google Scholar 

  12. N. Ichinose and T. Ogiwara, J. Ferroelectr. 196, 9 (1997).

    Article  CAS  Google Scholar 

  13. M.S. Tsai, S.C. Sun, and T.Y. Tseng, J. Appl. Phys. 82, 3482 (1997).

    Article  CAS  Google Scholar 

  14. S. Yamamichi, P.Y. Lesaicherre, H. Yamaguchi, K. Takemura, S. Sone, H. Yabuta, K. Sato, T. Tamura, K. Nakajima, S. Ohnishi, K. Tokashiki, Y. Hayashi, Y. Kato, Y. Miyasaka, M. Yoshida, and H. Ono, IEEE Trans. Electron Devices 44, 1076 (1997).

    Article  CAS  Google Scholar 

  15. T. Horikawa, M. Tasayoshi, T. Kawahara, M. Yamamuka, N. Hirano, T. Sato, S. Matsuno, T. Shibano, F. Uchikawa, K. Ono, and T. Oomori, in Ferroelectric Thin Films VII, edited by R.E. Jones, R.W. Schwartz, S. Summerfelt, and I.K. Yoo (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 3.

  16. W. Zhu, O.K. Tan, and X. Yao, J. Appl. Phys. 84, 5134 (1998).

    Article  CAS  Google Scholar 

  17. A.M. Azad, S.G. Mhaisalkar, L.D. Birkefeld, S.K. Akbar, and K.S. Goto, J. Electrochem. Soc. 139, 2913 (1992).

    Article  CAS  Google Scholar 

  18. N. Yamazoe, Sens. Actuators B5, 7 (1991).

    Article  Google Scholar 

  19. J. Watson, K. Ihokura, and G.S.V. Coles, Meas. Sci. Technol. 4, 711 (1993).

    Article  Google Scholar 

  20. R. Ionescu and A. Vancu, Appl. Surf. Sci. 74, 207 (1994).

    Article  CAS  Google Scholar 

  21. R.E. Cavicchi, J.S. Suehle, K.G. Kreider, B.L. Shomaker, J.A. Small, M. Gaitan, and P. Chaparala, Appl. Phys. Lett. 66, 812 (1995).

    Article  CAS  Google Scholar 

  22. Y. Liu, W. Zhu, O.K. Tan, Y. Shen, and X. Yao, J. Mater. Sci. Electron. Mater. 7, 279 (1996).

    Article  CAS  Google Scholar 

  23. P. Serrini, V. Briois, M.C. Horrillo, A. Traverse, and L. Manes, Thin Solid Films 304, 113 (1997).

    Article  CAS  Google Scholar 

  24. S. Fischer, K.D. Schierbaum, and W. Gopel, Sens. Actuators B 31, 13 (1996).

    Article  CAS  Google Scholar 

  25. I. Lundstron, Sens. Actuators A56, 75 (1996).

    Article  Google Scholar 

  26. W. Zhu, O.K. Tan, M.S. Tse, and X. Yao, Korea J. Phys. Soc. 32, 1778 (1998).

    Google Scholar 

  27. K. Yao, L.Y. Zhang, X. Yao, and W. Zhu, J. Mater. Sci. 32, 3659 (1997).

    Article  CAS  Google Scholar 

  28. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, United Kingdom, 1996).

    Google Scholar 

  29. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, London, United Kingdom, 1977).

    Google Scholar 

  30. C.P. de Araujo, J.F. Scott, and G.W. Taylor, Ferroelectric Thin Films: Synthesis and Basic Properties (Gordon and Breach, London, United Kingdom, 1996).

    Google Scholar 

  31. W. Zhu, M.S. Tse, and W. Lu, J. Integr. Ferroelectr. 12, 167 (1996).

    Article  CAS  Google Scholar 

  32. Y. Morita, K. Nakamura, and C. Kim, Sens. Actuators B 33, 96 (1996).

    Article  CAS  Google Scholar 

  33. D.M. Tahan, A. Safari, and L.C. Klein, J. Am. Ceram. Soc. 79, 1593 (1996).

    Article  CAS  Google Scholar 

  34. J.S. Zhu, X.B. Zhang, Y.F. Zhu, and S.B. Desu, J. Appl. Phys. 83, 1610 (1998).

    Article  CAS  Google Scholar 

  35. S. Schlag, H.F. Eicke, and W.B. Stern, J. Ferroelectr. 173, 351 (1995).

    Article  CAS  Google Scholar 

  36. W.L. Zhong, Y.G. Wang, and P.L. Zhang, Ferroelectr. Rev. 2, 131 (1998).

    Google Scholar 

  37. J.F. Scott, M. Azuma, C.A. Araujo, L.D. Mcmillan, M.C. Scott, and T. Roberts, J. Integr. Ferroelectr. 4, 61 (1994).

    Article  CAS  Google Scholar 

  38. J.F. Scott, B.M. Melnick, L.D. Mcmillam, and C.A. Araujo, J. Integr. Ferroelectr. 3, 225 (1993).

    Article  CAS  Google Scholar 

  39. G.W. Dietz, M. Schumacher, R. Waser, S.K. Streiffer, C. Basceri, and A.I. Kingon, J. Appl. Phys. 82, 2359 (1997).

    Article  CAS  Google Scholar 

  40. S.B. Krupanidhi and C.J. Peng, Thin Solid Films 305, 144 (1997).

    Article  CAS  Google Scholar 

  41. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley and Sons, New York, 1981).

    Google Scholar 

  42. I. Suzuki, M. Ejima, K. Watanake, Y. Xiong, and T. Saitoh, Thin Solid Films 313–314, 214 (1998).

    Article  Google Scholar 

  43. S.M. Sze, Modern Semiconductor Device Physics (John Wiley and Sons, New York, 1997).

    Google Scholar 

  44. J.L. Moll, Physics of Semiconductors (McGraw-Hill, New York, 1964).

    Google Scholar 

  45. C.M. Wolfe, N. Holonyak, Jr., and G.E. Stillman, Physical Properties of Semiconductors (Prentice-Hall, Englewood Cliffs, NJ, 1989).

    Google Scholar 

  46. A. Arbab, A. Spetz, and I. Lundström, Sens. Actuators B 15–16, 19 (1993).

    Article  Google Scholar 

  47. Y. Gurbuz, W.P. Kang, J. Davidson, D. Kinser, and D. Kerns, Sens. Actuators B 33, 100 (1996).

    Article  CAS  Google Scholar 

  48. Y. Gurbuz, W.P. Kang, J. Davidson, and D. Kerns, Sens. Actuators B 35–36, 68 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Tan, O.K., Deng, J. et al. Preparation, Property, and Mechanism Studies of Amorphous Ferroelectric (Ba, Sr)TiO3 Thin Films for Novel Metal–ferroelectric–metal Type Hydrogen Gas Sensors. Journal of Materials Research 15, 1291–1302 (2000). https://doi.org/10.1557/JMR.2000.0188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0188

Navigation