Skip to main content
Log in

In-situ post deposition annealing of lead-free ferroelectric thin films in oxygen rich atmosphere

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano-sized ferroelectric Ba(Zr0.15Ti0.85)O3 (BZT) thin films were deposited on Pt/Ti/SiO2/Si<111> substrates using pulsed LASER deposition technique. X-ray diffraction results highlighted the formation of single phase perovskite structure and Atomic Force Microscopy analyses revealed the uniform distribution of the nanometer sized grains. Enhanced properties were observed by in situ annealing of deposited BZT thin films in oxygen rich environment. The observed values of saturation polarization, remanent polarization are several orders higher than those reported in literature. The possible mechanisms for enhanced properties were discussed. Annealing in oxygen rich atmosphere decreased oxygen vacancies which in turn helped in realizing high dielectric constant and better tunability. A low leakage current density was observed in 125 nm thick BZT films. The underlying transport mechanism of leakage current was found to be of Poole–Frenkel type, an interface related phenomenon. Tunability as high as 62 % was observed corresponding to in situ annealed thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  2. André Chanthbouala, Vincent Garcia, Ryan O. Cherifi, Karim Bouzehouane, Stéphane Fusil, Xavier Moya, Stéphane Xavier, Hiroyuki Yamada, Cyrile Deranlot, Neil D. Mathur, Manuel Bibes, Agnès Barthélémy, Julie Grollier, Nat. Mater. 11, 860–864 (2012)

    Article  Google Scholar 

  3. D. Roy, S.B. Krupanidhi, Appl. Phys. Lett. 61, 2057–2059 (1992)

    Article  Google Scholar 

  4. S.B. Majumder, M. Jain, A. Martinez, R.S. Katiyar, F.W. Van Keuls, F.A. Miranda, J. Appl. Phys. 90, 896–903 (2001)

    Article  Google Scholar 

  5. M. Jain, S.B. Majumder, R.S. Katiyar, A.S. Bhalla, F.A. Miranda, F.W. Van Keuls, Appl. Phys. A 80, 645–647 (2005)

    Article  Google Scholar 

  6. Montserrat Fernández-Bolaños, Catherine Dehollain, Pierre Nicole, Adrian M. Ionescu, Solid State Electron. 54, 1033–1040 (2010)

    Article  Google Scholar 

  7. O.Yu. Buslov, Chong-Yun Kang, V.N. Keis, I.V. Kotelnikov, A. Yu Shimko, M.F. Ivanova, A.V. Tumarkin, S.F. Karmanenko, A.B. Kozyrev, Integr. Ferroelectr. 86, 171–179 (2006)

    Article  Google Scholar 

  8. C.S. Hwang, S.O. Park, H.J. Cho, C.S. Kang, H.K. Kang, S.I. Lee, M.Y. Lee, Appl. Phys. Lett. 67, 2819–2821 (1995)

    Article  Google Scholar 

  9. T.S. Kim, C.H. Kim, M.H. Oh, J. Appl. Phys. 75, 7998–8003 (1994)

    Article  Google Scholar 

  10. F. Moura, A.Z. Simoes, B.D. Stojanovic, M.A. Zaghete, E. Longoa, J.A. Varela, J. Alloys Compd. 462, 129–134 (2008)

    Article  Google Scholar 

  11. W.J. Jie, J. Zhu, W.F. Qin, X.H. Wei, J. Xiong, Y. Zhang, A. Bhalla, Y.R. Li, J. Phys. D Appl. Phys. 40, 2854–2857 (2007)

    Article  Google Scholar 

  12. A.R. James, C. Prakash, Appl. Phys. Lett. 84, 1165–1167 (2004)

    Article  Google Scholar 

  13. Kai-Huang Chen, Ting-Chang Chang, Guan-Chang Chang, Yung-En Hsu, Ying-Chung Chen, Xu Hong-Quan, Appl. Phys. A 99, 291–295 (2010)

    Article  Google Scholar 

  14. J. Ventura, I. Fina, C. Ferrater, E. Langenberg, L.E. Coy, M.C. Polo, M.V. García-Cuenca, L. Fàbrega, M. Varela, Thin Solid Films 518, 4692–4695 (2010)

    Article  Google Scholar 

  15. D.Y. Wang, P. Yun, Y. Wang, H.L.W. Chan, C.L. Choy, Thin Solid Films 517, 2092–2098 (2009)

    Article  Google Scholar 

  16. A. Dixit, S.B. Majumder, A. Savvinov, R.S. Katiyar, R. Guo, A.S. Bhalla, Mater. Lett. 56, 933–940 (2002)

    Article  Google Scholar 

  17. W.C. Xu, D.Y. Wang, X.G. Tang, Y. Wang, H.L.W. Chan, Integr. Ferroelectr. 80, 443–449 (2006)

    Article  Google Scholar 

  18. X.G. Tang, H.Y. Tian, J. Wang, K.H. Wong, H.L.W. Chan, Appl. Phys. Lett. 89, 142911–142913 (2006)

    Article  Google Scholar 

  19. Lina Gao, Jiwei Zhai, Sangnian Song, Xihong Hao, Xi Yao, J. Cryst. Growth 311, 299–303 (2009)

    Article  Google Scholar 

  20. J. Miao, J. Yuan, H. Wu, S.B. Yang, B. Xu, L.X. Cao, B.R. Zhao, Appl. Phys. Lett. 90, 022903–022905 (2007)

    Article  Google Scholar 

  21. M.L.V. Mahesh, V.V. Bhanuprasad, A.R. James, J. Electron. Mater. 42, 3547–3551 (2013)

    Article  Google Scholar 

  22. M.L.V. Mahesh, V.V. Bhanuprasad, A.R. James, J. Mater. Sci. Mater. Electron. 24, 4684–4692 (2013)

    Article  Google Scholar 

  23. M.L.V. Mahesh, A.R. James, J. Nanopart. Res. (2015) communicated

  24. Joint Committee on Powder Diffraction Standards 2001 Diffraction Data File no.36-0019, International Centre for Diffraction Data (ICDD, formerly JCPDS), Newton Square, PA

  25. B. Riehl, G. Subramanyam, R. Biggers, A. Campbell, F.W. van Keuls, F.A. Miranda, D. Tomlin, Integr. Ferroelectr. 55, 825–837 (2003)

    Article  Google Scholar 

  26. G. Subramanyam, B. Riehl, F. Ahamed, R. Biggers, A. Campbell, D. Kuylenstierna, A. Vorobiev, S. Gevorgian, Integr. Ferroelectr. 66, 139–151 (2004)

    Article  Google Scholar 

  27. Cătălina A. Vasilescu, Maria Crişan, Adelina C. Ianculescu, Mălina Răileanu, Măriuca Gartner, Mihai Anastasescu, Nicolae Drăgan, Dorel Crişan, Raluca Gavrilă, Roxana Truşcă, Appl. Surf. Sci. 265, 510–518 (2013)

    Article  Google Scholar 

  28. X.G. Tang, X.X. Wang, K.H. Wong, H.L.W. Chan, Appl. Phys. A 81, 1253–1256 (2005)

    Article  Google Scholar 

  29. X.G. Tang, R.K. Zheng, Y.P. Jiang, H.L.W. Chan, J. Phys. D Appl. Phys. 39, 3394–3399 (2006)

    Article  Google Scholar 

  30. J.Z. Xin, C.W. Leung, H.L.W. Chan, Thin Solid Films 519, 6313–6318 (2011)

    Article  Google Scholar 

  31. Kai-Huang Chen, Ying-Chung Chen, Cheng-Fu Yang, Ting-Chang Chang, J. Phys. Chem. Solids 69, 461–464 (2008)

    Article  Google Scholar 

  32. Cheng Gao, Jiwei Zhai, Xi Yao, Integr. Ferroelectr. 74, 147–153 (2005)

    Article  Google Scholar 

  33. A. Dixit, S.B. Majumder, R.S. Katiyar, A.S. Bhalla, Integr. Ferroelectr. 70, 45–59 (2005)

    Article  Google Scholar 

  34. Yanting Lin, Wu Guangheng, Ni Qin, Dinghua Bao, Thin Solid Films 520, 2800–2804 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Defence Research and Development Organization, Ministry of Defence, New Delhi for carrying out the present work. Also, the authors would like to thank the Director of Defence Metallurgical Research laboratory (DMRL) for his continuous support and for the permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. V. Mahesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, M.L.V., James, A.R. & Bhanu Prasad, V.V. In-situ post deposition annealing of lead-free ferroelectric thin films in oxygen rich atmosphere. J Mater Sci: Mater Electron 26, 4930–4935 (2015). https://doi.org/10.1007/s10854-015-3004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3004-5

Keywords

Navigation