Skip to main content
Log in

Fracture mode of alumina/silicon carbide nanocomposites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Computer simulations have been designed to elucidate the evolution of microcracking in a nanocomposite using appropriate material values for alumina and silicon carbide. These are compared to a single-phase material using elastic and thermal expansion coefficients for alumina. It is found that the region and the fracture mode where microcracking ensues are determined by the intensity and the length scale of the residual stress fields, which interact. Of specific interest are the region, fracture mode, and length of ensuing microcracks for materials with different inclusion locations (at the grain boundary or within the grain) and with different grain size to inclusion size ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Bennison and B.R. Lawn, Acta Metall. 37, 2659 (1989).

    Article  CAS  Google Scholar 

  2. A. Zimmermann and J. Rödel, J. Am. Ceram. Soc. 81, 2527 (1998).

    Article  CAS  Google Scholar 

  3. F.F. Lange, J. Am. Ceram. Soc. 72, 3 (1989).

    Article  CAS  Google Scholar 

  4. N. Ramachandran and D.K. Shetty, J. Am. Ceram. Soc. 74, 2634 (1991).

    Article  CAS  Google Scholar 

  5. K. Niihara, J. Ceram. Soc. Jpn. 99, 974 (1991).

    Article  CAS  Google Scholar 

  6. M. Sternitzke, J. Eur. Ceram. Soc. 17, 1061 (1997).

    Article  CAS  Google Scholar 

  7. L.C. Stearns and M.P. Harmer, J. Am. Ceram. Soc. 79, 3013 (1996).

    Article  CAS  Google Scholar 

  8. J. Zhao, L.C. Stearns, M.P. Harmer, H.M. Chan, G.A. Miller, and R.F. Cook, J. Am. Ceram. Soc. 76, 503 (1993).

    Article  CAS  Google Scholar 

  9. M. Hoffman and J. Rödel, J. Am. Ceram. Soc. Jpn. 105, 1086 (1997).

    Article  CAS  Google Scholar 

  10. I. Levin, W.D. Kaplan, D.G. Brandon, and A.A. Layyous, J. Am. Ceram. Soc. 78, 254 (1995).

    Article  CAS  Google Scholar 

  11. G. Pezzotti, V. Sergio, K. Ota, O. Sbaizero, N. Muraki, T. Nishida, and M. Sakai, J. Ceram. Soc. Jpn. 104, 497 (1996).

    Article  CAS  Google Scholar 

  12. R. Todd, M. Bourke, C. Borsa, and R. Brook, Acta Mater. 45, 1791 (1997).

    Article  CAS  Google Scholar 

  13. J. Perez-Rigueiro, J.Y. Pastor, J. Llorca, M. Elices, P. Miranzo, and J.S. Moya, Acta Mater. 46, 5399 (1998).

    Article  CAS  Google Scholar 

  14. L. Carroll, M. Sternitzke, and B. Derby, Acta Metall. Mater. 44, 4543 (1996).

    Article  CAS  Google Scholar 

  15. Y. Xu, A. Zangvil, and A. Kerber, J. Eur. Ceram. Soc. 17, 921 (1997).

    Article  CAS  Google Scholar 

  16. A. Zimmermann, W.C. Carter, and E.R. Fuller, Jr. (unpublished).

  17. N. Sridhar, W. Yang, D.J. Srolovitz, and E.R. Fuller, Jr., J. Am. Ceram. Soc. 77, 1123 (1994).

    Article  CAS  Google Scholar 

  18. M.P. Anderson, D.J. Srolovitz, P.S. Sahni, and G.S. Grest, Acta Metall. 32, 793 (1984).

    Article  Google Scholar 

  19. M. Hoffman, J. Rödel, M. Sternitzke, and R. Brook, in Fracture Mechanics of Ceramics, edited by R.C. Bradt, D.P.H. Hasselman, D. Munz, M. Sakai and V.Y. Shevchenko (Plenum Press, New York, 1996), Vol. 12 p. 179.

  20. G.S. Grest, M.P. Anderson, and D.J. Srolovitz, Philos. Mag. B 59, 293 (1988).

    Google Scholar 

  21. J.B. Wachtman, Jr., W.E. Tefft, D.G. Lam, Jr., and R.P. Stinchfield, J. Res. Natl. Bur. Stand. (U.S.) 43, 213 (1960).

    Article  Google Scholar 

  22. W. Kreher and W. Pompe, Internal Stresses in Heterogeneous Solids (Akademie-Verlag, Berlin, 1989).

    Google Scholar 

  23. D. Munz and T. Fett, Mechanisches Verhalten keramischer Werkstoffe (Springer-Verlag, Berlin, 1989).

    Book  Google Scholar 

  24. W.C. Carter, S.A. Langer, and E.R. Fuller, Jr., The OOF Manual: Version 1.0, NISTIR 6256 (National Institute of Standards and Technology, Gaithersburg, MD, 1998).

  25. A. Jagota and S.J. Bennison, Modelling Simul. Mater. Sci. Eng. 3, 485 (1995).

    Article  Google Scholar 

  26. T. Ohji, Y-K. Jeong, Y-H. Choa, and K. Niihara, J. Am. Ceram. Soc. 81, 1453 (1998).

    Article  CAS  Google Scholar 

  27. P. Merkert, M. Hoffman, and J. Rödel, J. Eur. Ceram. Soc. 18, 1645 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, A., Hoffman, M. & Rödel, J. Fracture mode of alumina/silicon carbide nanocomposites. Journal of Materials Research 15, 107–114 (2000). https://doi.org/10.1557/JMR.2000.0019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0019

Navigation