Skip to main content
Log in

Experimental Determination of the Length-Scale Parameter for the Phase-Field Modeling of Macroscale Fracture in Cr–Al2O3 Composites Fabricated by Powder Metallurgy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A novel approach is proposed to determine a physically meaningful length-scale parameter for the phase-field modeling of macroscale fracture in metal–ceramic composites on an example of chromium–alumina composite fabricated by powder metallurgy. The approach is based on the fractography analysis by the scanning electron microscopy (SEM) with the aim to measure the process zone size and use that value as the length-scale parameter in the phase-field modeling. Mode I and mixed-mode I/II fracture tests are conducted on Cr–Al2O3 composites at different reinforcement volume fractions and particle sizes using single-edge notched beams under four-point bending. The fracture surfaces are analyzed in detail by SEM to determine the size of the process zone where the microscale nonlinear fracture events occur. The model adequately approximates the experimentally measured fracture toughness and the fracture loads. It is shown that the model prediction of the crack initiation direction under the mixed-mode loading is in agreement with the experiments and the generalized maximum tangential stress criterion. These outcomes justify using the process zone size as the scale parameter in the phase-field modeling of macroscale fracture in chromium–alumina and similar metal–ceramic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. M. Rosso: J. Mater. Process. Technol., 2006, vol. 175, pp. 364–75.

    Article  CAS  Google Scholar 

  2. M. Finot, Y.L. Shen, A. Needleman, and S. Suresh: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2403–20.

    Article  CAS  Google Scholar 

  3. Y.L. Shen, A. Needleman, and S. Suresh: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 839–50.

    Article  CAS  Google Scholar 

  4. J. Zygmuntowicz, H. Winkler, M. Wachowski, P. Piotrkiewicz, and W. Kaszuwara: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 3628–46.

    Article  CAS  Google Scholar 

  5. J. Maj, W. Węglewski, K. Bochenek, Ł Rogal, S. Woźniacka, and M. Basista: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 4727–36.

    Article  CAS  Google Scholar 

  6. A.B. Pandey, B.S. Majumdar, and D.B. Miracle: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 921–36.

    Article  CAS  Google Scholar 

  7. S.G. Song, N. Shi, G.T. Gray, and J.A. Roberts: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3739–46.

    Article  CAS  Google Scholar 

  8. P. Agrawal and C.T. Sun: Compos. Sci. Technol., 2004, vol. 64, pp. 1167–78.

    Article  CAS  Google Scholar 

  9. X.J. Wang, K. Wu, W.X. Huang, H.F. Zhang, M.Y. Zheng, and D.L. Peng: Compos. Sci. Technol., 2007, vol. 67, pp. 2253–60.

    Article  CAS  Google Scholar 

  10. Q. Wu, W. Xu, and L. Zhang: Composites B, 2019, vol. 163, pp. 384–92.

    Article  CAS  Google Scholar 

  11. W. Węglewski, P. Pitchai, K. Bochenek, G. Bolzon, R. Konetschnik, B. Sartory, R. Ebner, D. Kiener, and M. Basista: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2377–90.

    Article  CAS  Google Scholar 

  12. A. Ayyar and N. Chawla: Compos. Sci. Technol., 2006, vol. 66, pp. 1980–94.

    Article  CAS  Google Scholar 

  13. A. Ayyar and N. Chawla: Acta Mater., 2007, vol. 55, pp. 6064–73.

    Article  CAS  Google Scholar 

  14. M. Li, S. Ghosh, O. Richmond, H. Weiland, and T.N. Rouns: Mater. Sci. Eng. A, 1999, vol. 266, pp. 221–40.

    Article  Google Scholar 

  15. J. Llorca, A. Needleman, and S. Suresh: Acta Metall. Mater., 1991, vol. 39, pp. 2317–35.

    Article  CAS  Google Scholar 

  16. C. Miehe, F. Welschinger, and M. Hofacker: Int. J. Numer. Methods Eng., 2010, vol. 83, pp. 1273–1311.

    Article  Google Scholar 

  17. C. Miehe, M. Hofacker, and F. Welschinger: Comput. Methods Appl. Mech. Eng., 2010, vol. 199, pp. 2765–78.

    Article  Google Scholar 

  18. S.N. Hirshikesh, R.K. Annabattula, and E. Martínez-Pañeda: Composites B, 2019, vol. 169, pp. 239–48.

    Article  Google Scholar 

  19. G. Molnár, A. Gravouil, R. Seghir, and J. Réthoré: Comput. Methods Appl. Mech. Eng., 2020, vol. 365, p. 113004.

    Article  Google Scholar 

  20. Y. Feng, Q. Wang, D. Wu, Z. Luo, X. Chen, T. Zhang, and W. Gao: Int. J. Eng. Sci., 2021, vol. 169, p. 103587.

    Article  Google Scholar 

  21. S. Goswami, C. Anitescu, S. Chakraborty, and T. Rabczuk: Theor. Appl. Fract. Mech., 2020, vol. 106, p. 102447.

    Article  Google Scholar 

  22. T.-T. Nguyen, J. Yvonnet, D. Waldmann, and Q.-C. He: Eng. Fract. Mech., 2019, vol. 218, p. 106574.

    Article  Google Scholar 

  23. T.T. Nguyen, J. Yvonnet, Q.Z. Zhu, M. Bornert, and C. Chateau: Comput. Methods Appl. Mech. Eng., 2016, vol. 312, pp. 567–95.

    Article  Google Scholar 

  24. Y. Chen, D. Vasiukov, L. Gélébart, and C.H. Park: Comput. Methods Appl. Mech. Eng., 2019, vol. 349, pp. 167–90.

    Article  Google Scholar 

  25. S.B. Biner and S.Y. Hu: Acta Mater., 2009, vol. 57, pp. 2088–97.

    Article  CAS  Google Scholar 

  26. G. Molnár, A. Doitrand, R. Estevez, and A. Gravouil: Theor. Appl. Fract. Mech., 2020, vol. 109, p. 102736.

    Article  Google Scholar 

  27. T.T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, K. Sab, R. Romani, and R. Le Roy: Int. J. Fract., 2016, vol. 197, pp. 213–26.

    Article  Google Scholar 

  28. E. Tanné, T. Li, B. Bourdin, J.J. Marigo, and C. Maurini: J. Mech. Phys. Solids, 2018, vol. 110, pp. 80–99.

    Article  Google Scholar 

  29. P.J. Loew, B. Peters, and L.A.A. Beex: J. Mech. Phys. Solids, 2019, vol. 127, pp. 266–94.

    Article  Google Scholar 

  30. ISO 23146:2012, Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Methods for Fracture Toughness of Monolithic Ceramics—Single-Edge V-Notch Beam (SEVNB) Method.

  31. W. Węglewski, M. Krajewski, K. Bochenek, P. Denis, A. Wysmołek, and M. Basista: Mater. Sci. Eng. A, 2019, vol. 762, p. 138111.

    Article  CAS  Google Scholar 

  32. W. Węglewski, M. Basista, M. Chmielewski, and K. Pietrzak: Composites B, 2012, vol. 43, pp. 255–64.

    Article  CAS  Google Scholar 

  33. A. Rabiei, L. Vendra, and T. Kishi: Composites A, 2008, vol. 39, pp. 294–300.

    Article  CAS  Google Scholar 

  34. H. Prielipp, M. Knechtel, N. Claussen, S.K. Streiffer, H. Müllejans, M. Rühle, and J. Rödel: Mater. Sci. Eng. A, 1995, vol. 197, pp. 19–30.

    Article  Google Scholar 

  35. J. Ulloa, P. Rodríguez, C. Samaniego, and E. Samaniego: Undergr. Space, 2019, vol. 4, pp. 10–21.

    Article  Google Scholar 

  36. C. Kuhn, A. Schlüter, and R. Müller: Comput. Mater. Sci., 2015, vol. 108, pp. 374–84.

    Article  Google Scholar 

  37. J.-Y. Wu: J. Mech. Phys. Solids, 2017, vol. 103, pp. 72–99.

    Article  Google Scholar 

  38. P.K. Kristensen and E. Martínez-Pañeda: Theor. Appl. Fract. Mech., 2020, vol. 107, p. 102446.

    Article  Google Scholar 

  39. T. Wick: SIAM J. Sci. Comput., 2017, vol. 39, pp. B589–8617.

    Article  Google Scholar 

  40. T. Gerasimov and L. De Lorenzis: Comput. Methods Appl. Mech. Eng., 2016, vol. 312, pp. 276–303.

    Article  Google Scholar 

  41. T. Wick: Comput. Methods Appl. Mech. Eng., 2017, vol. 325, pp. 577–611.

    Article  Google Scholar 

  42. B. Bourdin, G.A. Francfort, and J.J. Marigo: J. Mech. Phys. Solids, 2000, vol. 48, pp. 797–826.

    Article  Google Scholar 

  43. G. Molnár and A. Gravouil: Finite Elem. Anal. Des., 2017, vol. 130, pp. 27–38.

    Article  Google Scholar 

  44. R. de Borst and C.V. Verhoosel: Comput. Methods Appl. Mech. Eng., 2016, vol. 312, pp. 78–94.

    Article  Google Scholar 

  45. ISO 14704:2016, Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Flexural Strength of Monolithic Ceramics at Room Temperature.

  46. S.H. Chen and T.C. Wang: Acta Mech., 2002, vol. 157, pp. 113–27.

    Article  Google Scholar 

  47. M.G.D. Geers, R. de Borst, W.A.M. Brekelmans, and R.H.J. Peerlings: Int. J. Solids Struct., 1999, vol. 36, pp. 2557–83.

    Article  Google Scholar 

  48. H. Darban, M. Haghpanahi, and A. Assadi: Comput. Mater. Sci., 2011, vol. 50, pp. 1667–74.

    Article  Google Scholar 

  49. D.J. Smith, M.R. Ayatollahi, and M.J. Pavier: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 137–50.

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Science Centre (Poland) Grant No. UMO-2014/15/B/ST8/04314.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Basista.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Spectral Decomposition

Appendix: Spectral Decomposition

The strain tensor is decomposed into positive (tensile) and negative (compressive) parts:

$$ \varepsilon = {\varepsilon_+ } + {\varepsilon_- }. $$
(A1)

The positive and negative contributions are defined through the spectral decomposition of the strain tensor

$${\varepsilon_\pm } = {\sum\nolimits_{i = 1}^\delta {\left\langle {\varepsilon^i} \right\rangle }_\pm }{n^i} \otimes {n^i} $$
(A2)

with \({\left\langle X \right\rangle_\pm } = \left( {X \pm \left| X \right|} \right)/2\). The \({\varepsilon^i}\) and ni for i = 1,…,\(\delta \) are the principal strains and their directions (\(\delta\) = 2, or 3 for two- or three-dimensional problems).

The positive and negative contributions into the energy density in Eq. [4] are defined as:

$$ \psi_0^\pm = \frac{\lambda }{2}{\left\langle {{\text{tr}}\left[ \varepsilon \right]} \right\rangle_\pm }^2 + \mu {\text{tr}}\left[ {{\varepsilon_\pm }^2} \right],$$
(A3)

where λ and µ are the Lame coefficients and \({\text{tr}}\left[ X \right]\) is the trace of X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darban, H., Bochenek, K., Węglewski, W. et al. Experimental Determination of the Length-Scale Parameter for the Phase-Field Modeling of Macroscale Fracture in Cr–Al2O3 Composites Fabricated by Powder Metallurgy. Metall Mater Trans A 53, 2300–2322 (2022). https://doi.org/10.1007/s11661-022-06677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06677-3

Navigation