Skip to main content
Log in

Interfacial reactions of Co/Si0.76Ge0.24 and Co(Si0.76Ge0.24)/Si0.76Ge0.24 by pulsed KrF laser annealing

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Interfacial reactions of Co/Si0.76Ge0.24 and Co(Si0.76Ge0.24)/Si0.76Ge0.24 by pulsed KrF laser annealing as a function of energy density and pulse number were studied. For the Co/Si0.76Ge0.24 samples annealed at an energy density of 0.2–0.6 J/cm2, three germanosilicide layers, i.e., amorphous structure and/or nanocrystal, Co(Si1−xGex), and Co(Si1−xGex)2, were successively formed along the film-depth direction. At 0.3 J/cm2 Ge segregated to the underlying Si0.76Ge0.24 film, inducing strain relaxation in the residual Si0.76Ge0.24 film. At 0.8 J/cm2 the reacted region was mostly transformed to a single layer of Co(Si1−xGex)2, whereas Ge further diffused to the Si substrate. At 1.0 J/cm2, constitutional supercooling appeared. Even the Co(Si0.76Ge0.24) film used as the starting material for laser annealing could not prevent the occurrence of constitutional supercooling at energy densities >1.6 J/cm2. The energy densities at which Co(Si1−xGex) transformation to Co(Si1−xGex)2, Ge segregation to the underlying Si, and constitutional supercooling occurred were higher for the Co(Si0.76Ge0.24)/ Si0.76Ge0.24 system than for the Co/Si0.76Ge0.24 system. Higher energy density and/or pulse number enhanced the growth of Co(Si1−xGex)2 film. In the present study, the Co/Si0.76Ge0.24 samples subjected to annealing at 0.2 J/cm2 for 20 pulses produced a smooth Co(Si0.76Ge0.24)2 film without inducing Ge segregation out of the germanosilicide and strain relaxation in the unreacted Si0.76Ge0.24 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.Y. Huang, X. Zhu, M.O. Tanner, and K.L. Wang, Appl. Phys. Lett. 67, 566 (1995).

    Article  CAS  Google Scholar 

  2. H. Presting, H. Kibbel, M. Jaros, R.M. Turton, U. Menczigar, G. Abstreiter, and H.G. Grimmeiss, Semicond. Sci. Technol. 1, 1127 (1992).

    Article  Google Scholar 

  3. R.D. Thompson, K.N. Tu, J. Angillelo, S. Delage, and S.S. Iyer, J. Electrochem. Soc. 135, 3161 (1988).

    Article  CAS  Google Scholar 

  4. Q.Z. Hong and J.W. Mayer, J. Appl. Phys. 66, 611 (1989).

    Article  CAS  Google Scholar 

  5. H.K. Liou, X. Wu, U. Gennser, V.P. Kesan, S.S. Iyer, K.N. Tu, and E.S. Yang, Appl. Phys. Lett. 60, 577 (1992).

    Article  CAS  Google Scholar 

  6. A. Buxbaum, M. Eizenberg, A. Raizman, and F. Schaffler, Appl. Phys. Lett. 59, 665 (1991).

    Article  CAS  Google Scholar 

  7. A. Buxbuam, E. Zolotoyabko, M. Eizenberg, and F. Schaffler, Thin Solid Films, 222, 157 (1992).

    Article  Google Scholar 

  8. O. Thomas, S. Delage, F.M. d’Heurle, and G. Scilla, Appl. Phys. Lett. 54, 228 (1989).

    Article  CAS  Google Scholar 

  9. W.J. Qi, B.Z. Li, W.N. Huang, Z.G. Gu, H.Q. Lu, X.J. Zhang, M. Zhang, G.S. Dong, D.C. Miller, and R.G. Aitken, J. Appl. Phys. 77, 1086 (1995).

    Article  CAS  Google Scholar 

  10. D.B. Aldrich, Y.L. Chen, D.E. Sayers, R.J. Nemanich, S.P. Ashburn, and M.C. Ozturk, J. Appl. Phys. 77, 5107 (1995).

    Article  CAS  Google Scholar 

  11. D.B. Aldrich, H.L. Heck, Y.L. Chen, D.E. Sayers, and R.J. Nemanich, J. Appl. Phys. 78, 4958 (1995).

    Article  CAS  Google Scholar 

  12. A. Eyal, R. Brener, R. Beserman, M. Eizenberg, Z. Atzmon, D.J. Smith, and J.W. Mayer, Appl. Phys. Lett. 69, 64 (1996).

    Article  CAS  Google Scholar 

  13. W. Freiman, A. Eyal, Y.L. Khait, R. Beserman, and K. Dettmer. Appl. Phys. Lett. 69, 3821 (1996).

    Article  CAS  Google Scholar 

  14. M.C. Ridgway, R.G. Elliman, N. Hauser, J.-M. Baribeau, and T.E. Jackman, in Advanced Metallization and Processing for Semiconductor Devices and Circuits—II, edited by A. Katz, S.P. Murarka, Y.I. Nissim, and J.M.E. Harper (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA 1992), p. 857.

  15. F. Lin, G. Sarcona, M.K. Hatalis, A. F. Cserhati, E. Austin, and D.W. Greve, Thin Solid Films 250, 20 (1994).

    Article  CAS  Google Scholar 

  16. Z. Wang, Y.L. Chen, H. Ying, R.J. Nemanich, and D.E. Sayers, in Silicides, Germanides, and Their Interfaces, edited by R.W. Fathauer, S. Mantl, L.J. Schowalter, and K.N. Tu. (Mater. Res. Soc. Symp. Proc. 320, Pittsburgh, PA, 1994), p. 397.

  17. J.S. Juo, W.T. Lin, C.Y. Chang, W.C. Tsai, and S.J. Wang, Mater. Chem. Phys. 48, 140 (1997).

    Article  Google Scholar 

  18. V. Aubry, F. Meyer, R. Laval, C. Clerc, P. Warren, and D. Dutartre, in Silicides, Germanides, and Their Interfaces, edited by R.W. Fathauer, S. Mantl, L.J. Schowalter, and K.N. Tu. (Mater. Res. Soc. Symp. Proc. 320, 1994), p. 299.

  19. Q.Z. Hong and J.W. Mayer, in Advanced Metallizations In Microelectronics, edited by A. Katz, S.P. Murarka, and A. Appelbaum. (Mater. Res. Soc. Proc. 181, Pittsburgh, PA, 1990), p. 145.

  20. E.J. Jaquez, A.E. Bair, and T.L. Alford, Appl. Phys. Lett. 70, 874 (1997).

    Article  CAS  Google Scholar 

  21. Cohesion in Metals: Transition Metal Alloys, edited by F.R. Deboer, R. Boom, W.C. Mattens, A.R. Miedema, and A.K. Niessen, (North Holland, Amsterdam, 1988).

  22. J.M. Poate, H.J. Leamy, T.T. Sheng, and G.K. Celler, Appl. Phys. Lett. 33, 918 (1978).

    Article  CAS  Google Scholar 

  23. M. Witter and M. von Allmen, J. Appl. Phys. 50, 4786 (1979).

    Article  Google Scholar 

  24. R.T. Tung, J.M. Gibson, D.C. Jacobson, and J.M. Poate, Appl. Phys. Lett. 43, 476 (1983).

    Article  CAS  Google Scholar 

  25. E. D’Anna, G. Leggieri, and A. Luches, Appl. Phys. A 45, 325 (1988).

    Article  Google Scholar 

  26. J.S. Luo, W.T. Lin, C.Y. Chang, and W.C. Tsai, J. Appl. Phys. 82, 3621 (1997).

    Article  CAS  Google Scholar 

  27. J.S. Luo, W.T. Lin, C.Y. Chang, and W.C. Tsai, Mater. Chem. Phys. 54, 160 (1998).

    Article  CAS  Google Scholar 

  28. D.R. Chen, J.S. Luo, W.T. Lin, C.Y. Chang, and P.S. Shih, Appl. Phys. Lett. 73, 1355 (1998).

    Article  CAS  Google Scholar 

  29. J.R. Abelson, T.W. Sigmon, K.B. Kim, and K.H. Weiner, Appl. Phys. Lett. 52, 230 (1988).

    Article  CAS  Google Scholar 

  30. Z. Kantor, E. Fogarassy, A. Grob, J.J. Grob, D. Muller, B. Prevot, and R. Stuck, Appl. Phys. Lett. 69, 969 (1996).

    Article  CAS  Google Scholar 

  31. J. Boulmer, P. Boucaud, C. Guedj, D. Debarre, D. Bouchier, E. Finkman, S. Prawer, K. Nugent, A. Desmur-Larre, C. Godet, and P.R. Cabarrocas, J. Crystal Growth 157, 436 (1995).

    Article  CAS  Google Scholar 

  32. J. Brannon, Excimer Laser Ablation and Etching (American Vacuum Society, New York, 1993).

    Google Scholar 

  33. E. D’Anna, G. Leggieri, and A. Luches, Appl. Phys. A 45, 325 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Tai Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, JS., Hang, YL., Lin, WT. et al. Interfacial reactions of Co/Si0.76Ge0.24 and Co(Si0.76Ge0.24)/Si0.76Ge0.24 by pulsed KrF laser annealing. Journal of Materials Research 14, 3433–3438 (1999). https://doi.org/10.1557/JMR.1999.0464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0464

Navigation