Skip to main content
Log in

Cu(In,Ga)Se2 thin films annealed using a continuous wave Nd:YAG laser (λ0 = 532 nm): Effects of laser-annealing time

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Preparation of Cu(In,Ga)Se2 (CIGS) thin films has continued to face problems related to the selenization of sputtered Cu-In-Ga precursors when using H2Se vapor in that the materials are highly toxic and the facilities extremely costly. Another obstacle facing the production of CIGS thin films has been the required annealing temperature, as it relates to the decomposition temperature of a typical flexible polymer substrate. A novel laser-annealing process for CIGS thin films, which does not involve the selenization process and which can be performed at a lower temperature, has been proposed. Following sputtering with a Cu0.9In0.7Ga0.3Se2 target, the laser-annealing of the CIGS thin film was performed using a continuous 532-nm Nd:YAG laser with an annealing time of 200 - 1000 s at a laser optical power of 2.75 W. CIGS chalcopyrite (112), (220/204), and (312/116) phases, with some weak diffraction peaks corresponding to the Cu-Se- or the In-Se-related phases, were successfully obtained for all the CIGS thin films that had been laser-annealed at 2.75 W. The lattice parameters, the d-spacing, the tetragonal distortion parameter, and the strain led to the crystallinity being worse and grain size being smaller at 600 s while better crystallinity was obtained at 200 and 800 s, which was closely related to the deviations from molecularity and stoichiometry, which were greatest at 600 s while the values exhibited near-stoichiometric compositions at 200 and 800 s. The band gaps of the laser-annealed CIGS thin films were within a range of 1.765 - 1.977 eV and depended on the internal stress. The mean absorbance of the laser-annealed CIGS thin films was within a range of 1.598 - 1.900, suggesting that approximately 97.47 - 98.74% of the incident photons in the visible spectral region were absorbed by this 400-nm film. The conductivity types exhibited the same deviations (Δm > 0 and Δs < 0) in all the laser-annealed CIGS thin films. After laser-annealing, the resistivity fell abruptly to a range of 3.551 × 10 −2 - 1.022 × 10 −1 Ω·cm. The carrier concentration was on the order of 1019 - 1021 cm −3, and the carrier mobility was 5.7 × 10 −2 - 5.7 × 100 cm2/V·s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NREL. Record Cell Efficiency Chart. https://www. nrel.gov/pv/assets/images/efficiency-chart.png.

  2. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte and M. Powalla, Phys. Status Solidi RRL 10, 583 (2016).

    Article  Google Scholar 

  3. S. Oh and N-H. Kim, Calcogenide Lett. 11, 71 (2014).

    Google Scholar 

  4. Y. C. Lin, Z. Q. Lin, C. H. Shen, L. Q. Wang, C. T. Ha and C. Peng, J. Mater. Sci. 23, 493 (2012).

    Google Scholar 

  5. B. T. Jheng, P. T. Liu, M. C. Wu and H. P. D. Shieh, Opt. Lett. 37, 2760 (2012).

    Article  ADS  Google Scholar 

  6. A. AlSaggaf, E. Alarousu, S. Boulfrad and A. Rothenberger, in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (Denver, CO, USA, June 8-13, 2014), p. 0299.

  7. D. Sands, J. E. Nicholls, J. H. C. Hogg, S. Chalk, F. X. Wagner, W. E. Hagstona, M. O’Neill, B. Lunn and D. E. Ashenford, J. Cryst. Growth 184/185, 114 (1998).

    Article  ADS  Google Scholar 

  8. W. Tang, Z. Chen, S. He and H. Zhang, Procedia Chem. 1, 786 (2009).

    Article  Google Scholar 

  9. L. Schade, S. Franzka, S. Hardt, H. Wiggers and N. Hartmann, Appl. Surf. Sci. 278, 336 (2013).

    Article  ADS  Google Scholar 

  10. M. G. Kang, K. H. Cho, S. M. Oh, Y. H. Do, C. Y. Kang, S. Kim and S. J. Yoon, Curr. Appl. Phys. 11, S66 (2011).

    Article  ADS  Google Scholar 

  11. B. J. Simonds, H. J. Meadows, S. Misra, C. Ferekides, P. J. Dale and M. A. Scarpulla, J. Photon. Energy. 5, 050999 (2015).

    Article  Google Scholar 

  12. G. K. Bhaumik, A. K. Nath and S. Basu, Mater. Sci. Eng. B 52, 25 (1998).

    Article  Google Scholar 

  13. N-H. Kim, P. J. Ko, G-B. Cho and C. I. Park, J. Korean Phys. Soc. 70, 809 (2017).

    Article  ADS  Google Scholar 

  14. H. J. Meadows, A. Bhatia, V. Depredurand, J. Guillot, D. Regesch, A. Malyeyev, D. Colombara, M. A. Scarpulla, S. Siebentritt and P. J. Dale, J. Phys. Chem. C 118, 1451 (2014).

    Article  Google Scholar 

  15. N-H. Kim, C. I. Park and J. Park, J. Korean Phys. Soc. 62, 502 (2013).

    Article  ADS  Google Scholar 

  16. N-H. Kim, C. I. Park and H-Y. Lee, J. Korean Phys. Soc. 63, 229 (2013).

    Article  ADS  Google Scholar 

  17. G. M. Davis and M. C. Gower, Appl. Phys. Lett. 50, 1286 (1987).

    Article  ADS  Google Scholar 

  18. A. Medvid, V. G. Litovchenko, D. Korbutjak, S. G. Krilyuk, L. L. Fedorenko and Y. Hatanaka, Radiat. Meas. 33, 725 (2001).

    Article  Google Scholar 

  19. J. M. P. Coelho, M. A. Abreu, F. C. Rodrigues, Polym. Test. 23, 307 (2004).

    Article  Google Scholar 

  20. C. I. Park and N-H. Kim, Sci. Adv. Mater. (in press). http://dx.doi.org/10.1166/sam.2016.2959.

  21. A. M. Hermann, C. Gonzalez, P. A. Ramakrishnan, D. Balzar, N. Popa, P. Rice, C. H. Marshall, J. N. Hilfiker, T. Tiwald, P. J. Sebastian, M. E. Calixto and R. N. Bhattachary, Sol. Energ. Mat. Sol. C. 70, 345 (2001).

    Article  Google Scholar 

  22. Y. C. Lin, J. H. Ke, W. T. Yen, S. C. Liang, C. H. Wu and C. T. Chiang, Appl. Surf. Sci. 257, 4278 (2011).

    Article  ADS  Google Scholar 

  23. L. Ouyang, M. Zhao, D. Zhuang, J. Han, Z. Gao, L. Guo, X. Li, R. Sun and M. Cao, Sol. Energy 118, 375 (2015).

    Article  ADS  Google Scholar 

  24. P. Jakhmola, P. K. Jha and S. P. Bhatnagar, Appl. Nanosci. 6, 673 (2016).

    Article  ADS  Google Scholar 

  25. J. W. Park, Y. W. Choi, E. Lee, O. S. Joo, S. Yoon and B. K. Min, J. Crys. Growth 311, 2621 (2009).

    Article  ADS  Google Scholar 

  26. J. Olejníček, C. A. Kamler, S. A. Darveau, C. L. Exstrom, L. E. Slaymaker, A. R. Vandeventer, N. J. Ianno and R. J. Soukup, Thin Solid Films 519, 5329 (2011).

    Article  ADS  Google Scholar 

  27. J-C. Park, J-R. Lee, M. Al-Jassim and T-W. Kim, Opt. Mater. Express 6, 3541 (2016).

    Article  Google Scholar 

  28. J. Keller, R. Schlesiger, I. Riedel, J. Parisi, G. Schmitz, A. Avellan and T. Dalibor, Sol. Energ. Mat. Sol. C. 117, 592 (2013).

    Article  Google Scholar 

  29. R. Baier, Electronic grain boundary properties in polycrystalline Cu(In,Ga)Se2semiconductors for thin film solar cells (Helmholtz-Zentrum Berlin, Germany, 2012).

    Google Scholar 

  30. M. A. Islam, Q. Huda, M. S. Hossain, M. M. Aliyu, M. R. Karim, K. Sopian and N. Amin, Curr. Appl. Phys. 13, S115 (2013).

    Article  ADS  Google Scholar 

  31. F-L. Tang, R. Liu, H-T. Xue, W-J. Lu, Y-D. Feng, Z-Y. Rui and M. Huang, Chin. Phys. B 23, 077301 (2014).

    Article  ADS  Google Scholar 

  32. S. H. Jung, J. H. Choi and C. W. Chung, Curr. Phot. Res. 4, 87 (2016).

    Article  Google Scholar 

  33. S. Karthikeyan, A. E. Hill, R. D. Pilkington, J. S. Cowpe, J. Hisek and D. M. Bagnall, Thin Solid Films 519, 3107 (2011).

    Article  ADS  Google Scholar 

  34. A. Bouraiou, M. S. Aida, A. Mosbah and N. Attaf, Braz. J. Phys. 39, 543 (2009).

    Article  ADS  Google Scholar 

  35. M. R. Balboul, H. W. Schock, S. A. Fayak, A. A. El-Aal, J. H. Werner and A. A. Ramadan, Appl. Phys. A: Mater. Sci. Process. 92, 557 (2008).

    Article  ADS  Google Scholar 

  36. J. B. Fischer, CuInSe2 Thin Film Solar Cells Synthesised From Electrodeposited Binary Selenide Precursors (Université du Luxembourg, Germany, 2012).

    Google Scholar 

  37. G. K. Williamson and R. E. Smallman, Philos. Mag. 1, 34 (1956).

    Article  ADS  Google Scholar 

  38. C. I. Park and N-H. Kim, Sci. Adv. Mater. 8, 1813 (2016).

    Article  Google Scholar 

  39. X. Meng, H. Cao, H. Deng, W. Zhou, J. Tao, L. Sun, F. Yue, P. Yang and J. Chu, J. Alloys Compd. 644, 354 (2015).

    Article  Google Scholar 

  40. H. C. Ong, A. X. E. Zhu and G. T. Du, Appl. Phys. Lett. 80, 941 (2002).

    Article  ADS  Google Scholar 

  41. Joint Committee on Powder Diffraction Standards-International Centre for Diffraction Data; JCPDSICDD: Newtown Square, PA, USA, 1950-2000; Card number: CuInSe2 (40-1487), CuIn70Ga30Se2 (35-1102), Cu2Se (27-1131, 37-1187), Cu2-x Se (71-0044).

  42. D. N. Papadimitriou, G. Roupakas, G. G. Roumeliotis, P. Vogt and T. Köhler, Energies 9, 951 (2016).

    Article  Google Scholar 

  43. M. K. Trivedi and R. M. A Tallapragada, Met. Powder Rep. 63, 22 (2008).

    Article  Google Scholar 

  44. H. Neumann and R. D. Tomlinson, Solar Cells 28, 301 (1990).

    Article  Google Scholar 

  45. S. Wu, L. Zhou, Y. Wang, Y. Xue and Y. Teng, Mat. Sci. Semicon. Proc. 18, 128 (2014).

    Article  Google Scholar 

  46. D. Souri and K. J. Shomalian, Non-Cryst. Solids 355, 1597 (2009).

    Article  ADS  Google Scholar 

  47. J. M. González-Leal, A. Ledesma, A. M. Bernal-Oliva, R. Prieto-Alcón, E. Márquez, J. A. Angel and J. Cárabe, J. Mater. Lett. 39, 232 (1999).

    Article  Google Scholar 

  48. J. Liu, D. M. Zhuang, M. J. Cao, C. Y. Wang, M. Xie and X. L. Li, Int. J. Photoenergy 2012, 149210 (2012).

    Google Scholar 

  49. C. V. Ramana, R. J. Smith and O. M. Hussain, Phys. Status Solidi A 199, R4 (2003).

    Article  ADS  Google Scholar 

  50. Y. Kajikawa, J. Appl. Phys. 114, 043719 (2013).

    Article  ADS  Google Scholar 

  51. H. Neumann and R. D. Tomlinson, Solar Cells 28, 301 (1990).

    Article  Google Scholar 

  52. S. Karthikeyan, A. E. Hill, R. D. Pilkington, J. S. Cowpe, J. Hisek and D. M. Bagnall, Thin Solid Films 519, 3107 (2011).

    Article  ADS  Google Scholar 

  53. J. Müller, J. Nowoczin and H. Schmitt, Thin Solid Films 496, 364 (2006).

    Article  ADS  Google Scholar 

  54. D. Haneman, Crit. Rev. Solid State Mater. Sci. 14, 377 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, M.H., Ko, P.J., Kim, NH. et al. Cu(In,Ga)Se2 thin films annealed using a continuous wave Nd:YAG laser (λ0 = 532 nm): Effects of laser-annealing time. Journal of the Korean Physical Society 71, 1038–1047 (2017). https://doi.org/10.3938/jkps.71.1038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.1038

Keywords

Navigation