Skip to main content
Log in

Experimental study of atmospheric pressure chemical vapor deposition of silicon carbide from methyltrichlorosilane

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A comprehensive study of the chemical vapor deposition of SiC from methyltrichlorosilane at atmospheric pressure was conducted in this study; its main objectives were to identify the range of operating parameters in which stoichiometric SiC could be deposited and the generation of reliable kinetic data that could be used for the design of atmospheric pressure processes of chemical vapor deposition or chemical vapor infiltration of SiC. Deposition experiments were conducted in a hot-wall, cylindrical reactor at temperature ranging from 1273 to 573 K on flat graphite substrates or thin molybdenum wires aligned with the axis of the reactor. The obtained results showed that the deposition rate and the deposit stoichiometry varied markedly with the distance from the entrance of the reactor. The deposition rate exhibited, depending on the reaction temperature, one or two pronounced maxima before the beginning of the isothermal zone of the reaction, whereas the deposit stoichiometry showed an abrupt transition from almost silicon to stoichiometric silicon carbide after the first maximum. Experiments with HCl added in the feed showed that the presence of HCl could cause complete suppression of the deposition of silicon and lead to smoother variation of the SiC deposition rate with the residence time in the reactor. It is believed that this effect could be exploited to improve the uniformity of SiC deposition in chemical vapor deposition reactors or in the interior of porous preforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fitzer and D. Kehr, Thin Solid Films 39, 55 (1976).

    Article  CAS  Google Scholar 

  2. J.A. Powell and L.G. Matus, in Amorphous and Crystalline Silicon Carbide, edited by G.L. Harris and C.Y-W. Yang, (Springer Proc. Phys., Springer-Verlag, Berlin, 1989), Vol. 34, p. 2.

  3. J. Schlichting, Powder Metall. Int. 12, 141 and 196 (1980).

    CAS  Google Scholar 

  4. R.I. Fuentes, Chemistry and Industry 21, 806 (1992).

    Google Scholar 

  5. S.T. Buljan, A.E. Pesto, and H.J. Kim, Am. Ceram. Soc. Bull. 68, 387 (1989).

    CAS  Google Scholar 

  6. K.K. Chawla, Ceramic Matrix Composites (Chapman & Hall, London, 1993).

    Google Scholar 

  7. J.J. Mecholsky, Jr., Am. Ceram. Soc. Bull. 68, 367 (1989).

    CAS  Google Scholar 

  8. H.O. Pierson, Handbook of Chemical Vapor Deposition (Noyes Publications, NJ, 1992).

    Google Scholar 

  9. K. Minato and K. Fukuda, J. Nuclear Mat. 149, 233 (1987).

    Article  CAS  Google Scholar 

  10. R. Naslain, J.Y. Rossignol, P. Hagenmuller, F. Christin, L. Heraud, and J.J. Choury, Rev. Chim. Minerale 18, 544 (1981).

    CAS  Google Scholar 

  11. Y.G. Roman, D.P. Stinton, and T.M. Besmann, J. de Physique 1, C2–689 (1991).

    Google Scholar 

  12. T.M. Besmann, B.W. Sheldon, R.A. Lowden, and D.P. Stinton, Science 253, 1104 (1991).

    Article  CAS  Google Scholar 

  13. K. Sugiyama and E. Yamamoto, J. Mat. Sci. 24, 3756 (1989).

    Article  CAS  Google Scholar 

  14. S.V. Sotirchos, AIChE Journal 37, 1356 (1991).

    Article  Google Scholar 

  15. J.Y. Ofori and S.V. Sotirchos, J. Mat. Res. 11, 2541 (1996).

    Article  CAS  Google Scholar 

  16. J.Y. Ofori and S.V. Sotirchos, J. Electrochem. Soc. 144, 274 (1997).

    Article  CAS  Google Scholar 

  17. J.Y. Ofori and S.V. Sotirchos, AIChE J. 42, 2828 (1996).

    Article  CAS  Google Scholar 

  18. S.K. Griffiths and R.H. Nilson, J. Electrochem. Soc. 145, 1263 (1998).

    Article  CAS  Google Scholar 

  19. G.D. Papasouliotis and S.V. Sotirchos, in Gas-Phase and Surface Chemistry in Electronic Materials Processing, edited by T.J. Mountziaris, G.R. Paz-Pujalt, F.T.J. Smith, and P.R. Westmoreland (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1994), p. 111.

  20. D. Neuschütz and F. Salehomoum, in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by T.M. Besmann, B.M. Gallois, and J.W. Warren (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992), p. 41.

  21. R. Brütsch, Thin Solid Films 126, 313 (1985).

    Article  Google Scholar 

  22. T.M. Besmann and M.L. Johnson, Proceedings of 3rd International Symposium on Ceramic Materials and Components for Engines (Las Vegas, NE, 1988), p. 443.

    Google Scholar 

  23. F. Christin, R. Naslain, and C. Bernard, Proceedings of the 7th International Conference on Chemical Vapor Deposition, PV 79-3 (Electrochemical Society, Pennington, NJ, 1979), p. 499.

  24. F. Loumagne, Ph.D. Thesis, University of Bordeaux I, Bordeaux, France (1993).

  25. G.D. Papasouliotis, Ph.D. Thesis, University of Rochester, Rochester, NY (1997).

  26. G.D. Papasouliotis and S.V. Sotirchos, J. Electrochem. Soc. 142, 3834 (1995).

    Article  Google Scholar 

  27. K. Brennfleck, E. Fitzer, G. Schoch, and M. Dietrich, Proceedings of the 9th International Conference on Chemical Vapor Deposition, PV 84-6 (Electrochemical Society, Pennington, NJ, 1984), p. 64.

  28. G.D. Papasouliotis and S.V. Sotirchos, in Chemical Vapor Deposition 1996, CVD-XIII, edited by T.M. Besmann, M.D. Allendorf, McD. Robinson, and R.K. Ulrich, PV 96-5 (Proc. Electrochem. Soc., Pennington, NJ, 1996), p. 645.

  29. G.D. Papasouliotis and S.V. Sotirchos, J. Electrochem. Soc. (1998, in press).

  30. G.D. Papasouliotis and S.V. Sotirchos, J. Adv. Mater. Chem. Vapor Deposition (1998, in press).

  31. G.D. Papasouliotis and S.V. Sotirchos, J. Electrochem. Soc. 141, 1599 (1994).

    Article  CAS  Google Scholar 

  32. J. Yeheskel, S. Agam, and M.S. Dariel, in Chemical Vapor Deposition/1990, CVD-XI, edited by K.E. Spear and G.W. Gullen, PV 90-12 (Proc. Electrochem. Soc., Pennington, NJ, 1990), p. 696.

  33. M.L. Ivanova and A.A. Pletyushkin, Inorganic Mater. 4, 957 (1968).

    Google Scholar 

  34. S. Jonas, W.S. Ptak, W. Sadowski, E. Walasek, and C. Paluszkiewicz, J. Electrochem. Soc. 142, 2357 (1995).

    Article  CAS  Google Scholar 

  35. J.N. Burgess and T.J. Lewis, Chemistry and Industry 76 (1974).

  36. C.D. Stinespring and J.C. Wormhoudt, J. Appl. Phys. 65, 1733 (1989).

    Article  CAS  Google Scholar 

  37. K. Brennfleck and H. Reich, J. de Physique IV 1, C2–467 (1991).

    Google Scholar 

  38. Y. Ohshita, A. Ishitani, and T. Takada, J. Cryst. Growth 108, 499 (1991).

    Article  CAS  Google Scholar 

  39. JANAF Thermochemical Tables, edited by M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud, J. Phys. Chem. Ref. Data, 14, Suppl. 1, 3rd ed. (1985).

  40. M.D. Allendorf and C.F. Melius, J. Phys. Chem. 97, 720 (1993).

    Article  CAS  Google Scholar 

  41. J.E. Marra, E.R. Kreidler, N.S. Jacobson, and D.S. Fox, J. Am. Ceram. Soc. 71, 1067 (1988).

    Article  CAS  Google Scholar 

  42. M. Balooch and D.R. Olander, Surf. Sci. 261, 321 (1992).

    Article  CAS  Google Scholar 

  43. D.S. Park, M.J. McNallan, C. Park, and W.W. Liang, J. Am. Ceram. Soc. 73, 1323 (1990).

    Article  CAS  Google Scholar 

  44. T.M. Besmann, B.W. Sheldon, T.M. Moss III, and M.D. Kaster, J. Am. Ceram. Soc. 75, 2899 (1992).

    Article  CAS  Google Scholar 

  45. C. Delhaes and D. Neuschütz, in Chemical Vapor Deposition of Refractory Metals and Ceramics III, edited by W.Y. Lee, B.M. Gallois, and M.A. Pickering (Mater. Res. Soc. Symp. Proc. 363, Pittsburgh, PA, 1995), p. 63.

  46. T.M. Besmann, B.W. Sheldon, and M.D. Kaster, Surf. Coat. Technol. 43, 167 (1990).

    Article  Google Scholar 

  47. A.W.C. van Kemenade and C.F. Stemfoort, J. Cryst. Growth 12, 13 (1972).

    Article  Google Scholar 

  48. L.M. Ivanova and A.A. Pletyushkin, Inorg. Mater. 3, 1585 (1967).

    Google Scholar 

  49. B.J. Choi and D.R. Kim, J. Mat. Sci. Let. 10, 860 (1991).

    Article  CAS  Google Scholar 

  50. D.J. Cheng, W.J. Shyy, D.H. Kuo, and M.H. Hon, J. Electrochem. Soc. 134, 3145 (1987).

    Article  CAS  Google Scholar 

  51. F. Langlais, C. Prebende, B. Tarride, and R. Naslain, J. de Physique 50, C5–93 (1990).

    Google Scholar 

  52. J. Chin, P.K. Gantzel, and R.G. Hudson, Thin Solid Films 40, 57 (1977).

    Article  CAS  Google Scholar 

  53. A.I. Kingon, L.J. Lutz, P. Liaw, and R.F. Davis, J. Am. Ceram. Soc. 66, 558 (1983).

    Article  CAS  Google Scholar 

  54. J. Yeshekel and M.S. Dariel, J. Am. Ceram. Soc. 78, 229 (1995).

    Article  Google Scholar 

  55. R.F. Davis, in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by T.M. Besmann and B.M. Gallois (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA 1990), p. 145.

  56. J.M. Blocher, Jr., J. Vac. Sci. Technol. 11, 680 (1974).

    Article  CAS  Google Scholar 

  57. B.S. Cartwright and P. Popper, Proceedings of the 5th International Conference on Science of Ceramics, edited by C. Brosset and E. Knopp (Swedish Institute of Silicate Research, Gothenburg, Sweden, 1970), p. 473.

  58. F. Gao and R.Y. Lin, Proc. of Adv. Mat. 4, 13 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papasouliotis, G.D., Sotirchos, S.V. Experimental study of atmospheric pressure chemical vapor deposition of silicon carbide from methyltrichlorosilane. Journal of Materials Research 14, 3397–3409 (1999). https://doi.org/10.1557/JMR.1999.0460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0460

Navigation