Skip to main content
Log in

A transmission electron microscopy investigation of SiC films grown on SiC substrates by solid-source molecular beam epitaxy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The relationship between the defect microstructure of SiC films grown by solid-source molecular-beam epitaxy on 4H and 6H–SiC substrates and their growth conditions, for substrate temperatures ranging between 950 and 1300 °C, has been investigated by a combination of transmission electron microscopy and atomic force microscopy. The results demonstrate that the formation of defective cubic films is generally found to occur at temperatures below 1000 °C. At temperatures above 1000 °C our investigations prove that simultaneous supply of C and Si in the step-flow growth mode on vicinal 4H and 6H substrate surfaces results in defect-free hexagonal SiC layers, and defect-free cubic SiC can be grown by the alternating deposition technique. The controlled overgrowth of hexagonal on top of cubic layers is demonstrated for thin layer thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Davis, G. Kelner, M. Shur, J.W. Palmour, and J.A. Edmond, Proc. IEEE 79, 677 (1992).

    Article  Google Scholar 

  2. H. Baumhauer, Z. Krist. 50, 33 (1912).

    CAS  Google Scholar 

  3. A.R. Verma and P. Krisha, Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).

    Google Scholar 

  4. P. Pirouz and J.W. Young, Ultramicroscopy 51, 189 (1993).

    Article  CAS  Google Scholar 

  5. L. Wada, T. Negami, and M. Nishitami, J. Mater. Res. 9, 658 (1994).

    Article  CAS  Google Scholar 

  6. J.W. Yang and P. Pirouz, J. Mater. Res. 6, 2902 (1993).

    Article  Google Scholar 

  7. M. Tanaka, Acta Crystallogr. A50, 261 (1994).

    Article  CAS  Google Scholar 

  8. L. Wada, H. Wada, and L.F. Allard, J. Mater. Res. 7, 148 (1992).

    Article  Google Scholar 

  9. F.R. Chien, S.R. Nutt, W.S. Yoo, T. Kimoto, and H. Matsunami, J. Mater. Res. 9, 940 (1994).

    Article  CAS  Google Scholar 

  10. J.S. Bow, R.W. Carpenter, and M.J. Kim, J. Microsc. Soc. Am. 2, 63 (1996).

    CAS  Google Scholar 

  11. R.F. Davis, J. Cryst. Growth, 137, 161 (1994).

    Article  CAS  Google Scholar 

  12. H. Matsunami, Phys. B, 185, 65 (1993).

    Article  CAS  Google Scholar 

  13. A.O. Konstantinov, C. Hallin, B. Pecz, O. Kordina, and E. Janzen, J. Cryst. Growth, 178, 495 (1997).

    Article  CAS  Google Scholar 

  14. V. Heine, C. Cheng, and R.J. Needs, J. Am. Ceram. Soc. 74, 2630 (1991).

    Article  CAS  Google Scholar 

  15. V.D. Heydemann, N. Schultze, D.L. Barrett, and G. Pensl, Appl. Phys. Lett. 69, 3728 (1996).

    Article  CAS  Google Scholar 

  16. D.J. Smith, N.W. Jepps, and T.F. Page, J. Microsc. 114, 1 (1978).

    Article  CAS  Google Scholar 

  17. U. Kaiser, S.B. Newcomb, M.W. Stobbs, A. Fissel, and W. Richter, J. Mater. Res. 13, 3571 (1998).

    Article  CAS  Google Scholar 

  18. A. Fissel, U. Kaiser, K. Pfennighaus, B. Schröter, and W. Richter, Appl. Phys. Lett. 68, 1204 (1996).

    Article  CAS  Google Scholar 

  19. A. Fissel, B. Schröter, and W. Richter, Festkörperprobleme (in press).

  20. S. Kaneda, Y. Sakamoto, T. Hirara, and T. Tanaka, J. Cryst. Growth 81, 536 (1987).

    Article  CAS  Google Scholar 

  21. T. Yoshinobu, H. Mitsu, I. Izumikawa, T. Fuyuki, and H. Matsunami, Appl. Phys. Lett. 60, 824 (1990).

    Article  Google Scholar 

  22. L.B. Roland, R.S. Kern, S. Tanaka, and R.S. Davis, J. Mater. Res. 8, 2753 (1993).

    Article  Google Scholar 

  23. S. Tanaka, R.S. Scott, and R.F. Davis, Appl. Phys. Lett. 65, 2851 (1994).

    Article  CAS  Google Scholar 

  24. R.S. Kern, K. Järendahl, S. Tanaka, and R.F. Davis, Phys. State Solid B 202, 379 (1997).

    Article  CAS  Google Scholar 

  25. E. Ducke, R. Kriegel, A. Fissel, U. Kaiser, B. Schröter, P. Müller, and W. Richter, Inst. Phys. Conf. Ser. 142, 609 (1996).

    CAS  Google Scholar 

  26. A. Fissel, U. Kaiser, E. Ducke, B. Schröter, and W. Richter, J. Cryst. Growth 154, 72 (1995).

    Article  CAS  Google Scholar 

  27. U. Kaiser, A. Chuvillin, and W. Richter, Ultramicroscopy 76, 21–37 (1999).

    Article  CAS  Google Scholar 

  28. U. Kaiser, P.D. Brown, A. Chuvilin, I. Khodos, A. Fissel, W. Richter, and C.J. Humphreys, Mater. Sci. Forum 264–268, 259 (1998).

    Article  Google Scholar 

  29. K. Chourou, M. Anikin, V. Lauer, G. Guillot, J. M. Bluet, J. Camassel, O. Chaix, and R. Madar, Mater. Sci. Forum 17, 264 (1998).

    Google Scholar 

  30. Y.M. Tairov and V.F. Tsvetkov, Prog. Cryst. Growth Character. 7, 111 (1983).

    Article  CAS  Google Scholar 

  31. N. Ming and J. Sunagawa, J. Cryst. Growth 87, 13 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, U., Khodos, I., Brown, P.D. et al. A transmission electron microscopy investigation of SiC films grown on SiC substrates by solid-source molecular beam epitaxy. Journal of Materials Research 14, 3226–3236 (1999). https://doi.org/10.1557/JMR.1999.0436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0436

Navigation