Skip to main content
Log in

Al–Ta Bilayer as an Oxidation Resistant Barrier for Electrode Structures in High Dielectric Constant Capacitors

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Aluminum-tantalum bilayers have been investigated for their potential to serve as conductive barriers to oxygen diffusion when annealed at conditions corresponding to crystallization of perovskite dielectrics such as lead lanthanum titanate (PLT). Ta (50 nm)/Al (15 nm) structures have been deposited on Si substrates and annealed in oxygen at 650 and 700 °C for various amounts of time. The as-deposited and annealed structures have been characterized by x-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), and Auger electron spectroscopy (AES) analysis and by four-point probe electrical measurements. It has been found that the Al–Ta structures can withstand complete oxidation when exposed to oxygen at 650 °C for 30 min or 700 °C for 1 min and the oxide layer formed at the surface of the structure acts as a barrier to further oxygen diffusion. When a PLT film was deposited directly on the Al–Ta structures intermixing took place. It was therefore necessary to insert a Pt layer between the Al–Ta barrier and PLT layer. In such a case the PLT showed electrical properties similar to those obtained when deposited on SiO2/Pt; however, the Al–Ta structure did interact with Pt during the perovskite formation anneal. It has been found that this interaction can be prevented by preannealing the Al–Ta, in oxygen, prior to the deposition of Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Kryder, MRS Bulletin 21 (9), 17 (1996).

    Article  Google Scholar 

  2. S. Onodera, H. Kondo, and T. Kawana, MRS Bulletin 21 (9), 35 (1996).

    Article  CAS  Google Scholar 

  3. H. Watanabe and J. Seto, Bull. Chem. Soc. Jpn. 61, 2411 (1991).

    Article  Google Scholar 

  4. F. Hong, B.L. Yang, L. H. Schwartz, and H. H. Kung, J. Phys. Chem. 88, 2525 (1984).

    Article  CAS  Google Scholar 

  5. E. Kroll, F. M. Winnik, and R. Ziolo, Chem. Mater. 8, 1594 (1996).

    Article  CAS  Google Scholar 

  6. D. Vollath, D. V. Szabo, R. D. Taylor, J. O. Willis, and K. E. Sickafus, Nanostruct. Mater. 6, 941 (1995).

    Article  Google Scholar 

  7. F. Tronc, P. Prene, J. P. Jolivet, F. d’Orazio, F. Lucari, D. Fiorani, M. Godinho, R. Cherkaoui, M. Nogues, and J.L. Dormann, Hyperfine Interact. 95, 129 (1995).

    Article  CAS  Google Scholar 

  8. S. Linderoth, P. Hendriksen, F. Bodker, S. Wells, K. Davies, S. W. Charles, and S. Morup, J. Appl. Phys. 75, 6583 (1994).

    Article  CAS  Google Scholar 

  9. J. C. Chadwick, D. H. Jones, M.F. Thomas, C.J. Tatlock, and M. Devenish, Hyperfine Interact. 28, 541 (1986).

    Article  CAS  Google Scholar 

  10. Y.S. Kang, S. Risbud, J.F. Rabolt, and P. Stroeve, Chem. Mater. 8, 2209 (1996).

    Article  CAS  Google Scholar 

  11. R.F. Ziolo, E.P. Giannelis, B. A. Weinstein, M. P. O’Horo, B.N. Ganguly, V. Mehrotra, M.W. Russel, and D. R. Huffman, Science 257, 219 (1992).

    Article  CAS  Google Scholar 

  12. M.P. Morales, C. Pecharroman, T. Gonzáles Carreño, and C. J. Serna, J. Solid State Chem. 108, 158 (1994).

    Article  CAS  Google Scholar 

  13. P. Ayyub, M. Multani, M. Barma, and R. Viiayaraghavan, J. Phys. C 21, 2229 (1988).

    Article  CAS  Google Scholar 

  14. N. Takahashi, N. Kakuta, A. Ueno, K. Yamaguchi, T. Fujii, T. Mizushima, and Y. Udagawa, J. Mater. Sci. 26, 497 (1991).

    Article  CAS  Google Scholar 

  15. G. Ennas, A. Musinu, G. Piccaluga, D. Zedda, D. Gatteschi, C. Sangregorio, J. L. Stanger, G. Concas, and G. Spano, Chem. Mater. 10, 495 (1998).

    Article  CAS  Google Scholar 

  16. E. Tronc and J. P. Jolivet, Hyperfine Interact. 28, 525 (1986).

    Article  CAS  Google Scholar 

  17. E. Tronc, J. P. Jolivet, and J. Livage, Hyperfine Interact. 54, 737 (1990).

    Article  CAS  Google Scholar 

  18. K. Haneda and A. H. Morrish, Solid State Commun. 22, 779 (1977).

    Article  CAS  Google Scholar 

  19. O. Baudisch and W.H. Hartung, Inorg. Synth. 1, 184 (1939).

    Google Scholar 

  20. O. Baudisch and W.H. Hartung, Inorg. Synth. 1, 185 (1939).

    Google Scholar 

  21. F. D. Snell and L. S. Ettre, in Encyclopedia of Industrial Chemical Analysis (Wiley, New York, 1970–72).

  22. H.A. Flaschka, in EDTA Titrations (Pergamon Press, London, U.K., 1959), p. 81.

  23. B.E. Warren, in X-Ray Diffraction (Addison-Wesley, Reading, MA, 1968).

    Google Scholar 

  24. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  CAS  Google Scholar 

  25. R.B. Von Dreel and A. C. Larson, in LANSCE Newsletter no. 4, Los Alamos, NM Winter 1988.

  26. C. J. Howard, J. Appl. Crystallogr. 15, 615 (1982).

    Article  CAS  Google Scholar 

  27. M. Carbone, R. Caminiti, and C. Sadun, J. Mater. Chem. 6, 1709 (1996).

    Article  CAS  Google Scholar 

  28. R. Caminiti, C. Sadun, M. Bionducci, F. Buffa, G. Ennas, G. Licheri, A. Musinu, and G. Navarra, Gazz. Chim. Ital. 127, 59 (1997).

    CAS  Google Scholar 

  29. JCPDF card no. 8–98 and no. 8–524, International Center for Diffraction Data, Swarthmore, PA.

  30. H.P. Klug and L. E. Alexander, in X-Ray Diffraction Procedures for Polycrystalline Materials (John Wiley & Sons, New York, 1974).

    Google Scholar 

  31. C. Greaves, J. Solid State Chem. 49, 325 (1983).

    Article  CAS  Google Scholar 

  32. A. N. Shmakov, G. N. Kryukova, V. S. Tsybhulya, A.L. Chiuviliu, and V. P. Solovyeva, J. Appl. Crystallogr. 28, 141 (1995).

    Article  CAS  Google Scholar 

  33. A. F. Wells, in Structural Inorganic Chemistry (Oxford Univ. Press, London, 1975).

    Google Scholar 

  34. C. Haas, J. Phys. Chem. Solids 26, 1225 (1965).

    Article  CAS  Google Scholar 

  35. V. Chhabra, P. Ayyub, S. Chattopadhyay, and A. N. Maitra, Mater. Lett. 26, 21 (1996).

    Article  CAS  Google Scholar 

  36. S. Kachi, K. Momiyama, and S. Shimizu, J. Phys. Soc. Jpn. 18, 1 (1963).

    Article  Google Scholar 

  37. R. M. Torrès Sánchez, J. Mater. Sci. Lett. 15, 461 (1996).

    Article  Google Scholar 

  38. S. Schumaker, R. Birringer, R. Strauss, and H. Gleiter, Acta Metall. 37, 2485 (1989).

    Article  Google Scholar 

  39. A. N. Goldsmith, C. M. Echer, and A. P. Alivisatos, Science 256, 1425 (1992).

    Article  Google Scholar 

  40. D. A. Perkins and J. P. Attfield, J. Chem. Soc. Chem. Commun. 1991, 229 (1991).

    Article  Google Scholar 

  41. M. Avrami, J. Chem. Phys. 7, 1103 (1939) and 8, 212 (1940).

    Article  Google Scholar 

  42. S. Meillon, H. Dammak, E. Flaving, and H. Pascard, Philos. Mag. 72, 105 (1995).

    Article  CAS  Google Scholar 

  43. G. W. Oosterhout, Acta Crystallogr. 13, 932 (1960).

    Article  Google Scholar 

  44. P. Ivanov and M. Mokhov, J. Magn. Magn. Mater. 104–107, 417 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grill, A., Cabral, C. Al–Ta Bilayer as an Oxidation Resistant Barrier for Electrode Structures in High Dielectric Constant Capacitors. Journal of Materials Research 14, 15 (1999). https://doi.org/10.1557/JMR.1999.0212

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.1999.0212

Navigation