Skip to main content
Log in

Processing Magnetoresistive Thin Films Via Chemical Solution Deposition

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A chemical solution deposition (CSD) procedure was used to prepare epitaxial lanthanum calcium manganese oxide (LCMO) thin films on (100) SrTiO3 single-crystal substrates. The colossal magnetoresistance (CMR) properties of the films were found to be comparable to those processed with vacuum deposition techniques and to bulk samples. The (200) LCMO d-spacing and insulator-metal transition temperature (TIM) were measured for films heat-treated at different temperatures, partial pressures of O2, and different times. The variations observed suggest a direct link between lattice parameter and TIM, as can be understood through their mutual dependence on the Mn4+/Mn3+ ratio. The measurements also suggest that film and powder samples crystallize Mn41-rich with respect to the Ca-substitution level, consistent with the larger lattice parameter and higher TIM observed following short heat treatments at high temperatures or long treatments at lower temperatures. Films refired in reducing conditions had the largest (200) d-spacing and slightly lower TIM, as expected from the 30% Ca-substitution level and consistent with the LCMO electronic/magnetic phase diagram constructed for bulk samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Lowden and K. L. More, in Interfaces in Composites, edited by C.G. Pantano and E. J.H. Chen (Mater. Res. Soc. Symp. Proc. 170, Pittsburgh, PA, 1990), pp. 205–214.

    Google Scholar 

  2. R. A. Lowden, Advanced Composite Materials: Processing Microstructures, Bulk and Interfacial Properties, Characterization Methods, and Applications, edited by M. D. Sacks (The American Ceramic Society, Westerville, OH, 1991), Vol. 19, pp. 619–630.

  3. P. E. D. Morgan and D. B. Marshall, Mater. Sci. Eng. A 162 1, 15–25 (1993).

    Article  Google Scholar 

  4. P. E. D. Morgan, D. B. Marshall, and R. M. Housley, Mater. Sci. Eng. A 195 (1–2), 215–222 (1995).

  5. P. E. D. Morgan and D. B. Marshall, J. Am. Ceram. Soc. 78 6, 1553–1563 (1995).

    Article  CAS  Google Scholar 

  6. D. B. Marshall, P. E. D. Morgan, and R. M. Housley, J. Am. Ceram. Soc. 80 7, 1677–1683 (1997).

    Article  CAS  Google Scholar 

  7. R. W. Goettler, S. Sambasivan, and V. P. Dravid, in Ceramic Engineering and Science Proceedings, Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics, Materials, and Structures–A, Cocoa Beach, FL (The American Ceramic Society, Westerville, OH, 1997), Vol. 18, pp. 279–286.

  8. R.W. Goettler, S. Sambasivan, V.P. Dravid, and S. T. Kim, unpublished.

  9. R.F. Cooper and P. C. Hall, J. Am. Ceram. Soc. 76 5, 1265–1273 (1993).

    Article  CAS  Google Scholar 

  10. P. Reig, G. Demazeau, and R. Naslain, J. Mater. Sci. 32 16, 4189–4194 (1997).

    Article  CAS  Google Scholar 

  11. P. Reig, G. Demazeau, and R. Naslain, J. Mater. Sci. 32 16, 4195–4200 (1997).

    Article  CAS  Google Scholar 

  12. M.K. Cinibulk, in Ceramic Engineering and Science Proceedings, Proceedings of the 18th Annual Conference on Composites and Advanced Ceramic Materials–B, Cocoa Beach, FL (The American Ceramic Society, Westerville, OH, 1994), Vol. 15, pp. 721–728.

  13. M.K. Cinibulk, J. Mater. Res. 10, 71–76 (1995).

    Article  CAS  Google Scholar 

  14. M.K. Cinibulk, J. Mater. Sci. Lett. 14 9, 651–654 (1995).

    Article  CAS  Google Scholar 

  15. M.K. Cinibulk and R. S. Hay, J. Am. Ceram. Soc. 79 5, 1233–1246 (1996).

    Article  CAS  Google Scholar 

  16. P.W. Brown and S. Sambasivan, in Ceramic Engineering and Science Proceedings, Proceedings of the 18th Annual Conference on Composites and Advanced Ceramic Materials–B, Cocoa Beach, FL (The American Ceramic Society, Westerville, OH, 1994), Vol. 15, pp. 729–730.

  17. W.T. Petuskey and S. Sambasivan, J. Mater. Res. (1999, in press).

  18. S. Sambasivan and W. T. Petuskey, “Oxidation Resistant Interface Materials for High Temperature Ceramic Matrix Composites,” presented at the Annual Meeting of the American Ceramic Society, Indianapolis, IN, 1996.

  19. W.T. Petuskey, S. L. Furcone, K. Steiner, and S. Sambasivan, “Layered Oxide Compounds as Boundary Phases for Ceramic Matrix Composites,” presented at the 1996 Conference on Composites, Advanced Ceramics, and Materials, Cocoa Beach, FL, 1996.

  20. M. Dion, M. Ganne, and M. Tournoux, Mater. Res. Bull. 16 11, 1429–1435 (1981).

    Article  CAS  Google Scholar 

  21. R.J. Kerans, Scripta Metall. Mater. 32 4, 505–509 (1995).

    Article  CAS  Google Scholar 

  22. T.A. Parthasarathy and R. J. Kerans, J. Am. Ceram. Soc. 80 8, 2043–2055 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polli, A.D., Lange, F.F., Ahlskog, M. et al. Processing Magnetoresistive Thin Films Via Chemical Solution Deposition. Journal of Materials Research 14, 13 (1999). https://doi.org/10.1557/JMR.1999.0182

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.1999.0182

Navigation