Skip to main content
Log in

Effect of Ti Substitution on the Microstructure and Properties of Zr–Mn–V–Ni AB2 Type Hydride Electrode Alloys

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The electrochemical capacity, hydrogen absorbed/desorbed activation properties of alloy Zr(Mn0.1V0.3Ni0.6)2 were improved after Ti substitution for the Zr. The microstructure of Zr1xTix (Mn0.1V0.3Ni0.6)2 (x = 0, 0.5) alloys was analyzed by x-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersive spectrum (EDS) analysis. A systematic structural analysis shows that there are two phases in the Ti-substituted alloy of Zr0.5Ti0.5(Mn0.1V0.3Ni0.6)2: C14 Laves phase and Ti-containing “premartensite” R phase of Ti0.8Zr0.2Ni. The improvement of electrochemical properties of alloy Zr(Mn0.1V0.3Ni0.6)2 after Ti substitution can be attributed to the Ti substitution for Zr sites in C14 Laves phase, the formation of Ti0.8Zr0.2Ni R-phase, and disappearance of Zr–Ni binaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Piotrowska, Electron. Technol. 24, 3 (1991).

    CAS  Google Scholar 

  2. B. L. Sharma, Semiconductors and Semimetals 15, 1 (1981).

    Article  CAS  Google Scholar 

  3. V. L. Rideout, Solid State Electron. 18, 541 (1975).

    Article  CAS  Google Scholar 

  4. N. E. Lumpkin, W. D. King, and T. L. Tansley, J. Mater. Res. 11, 1238 (1996).

    Article  CAS  Google Scholar 

  5. N. E. Lumpkin, G. R. Lumpkin, and K. S. A. Butcher, J. Mater. Res. 11, 1244 (1996).

    Article  CAS  Google Scholar 

  6. C. R. M. Grovenor, Properties of Gallium Arsenide (The Institution of Electrical Engineers, New York, 1986), p. 17.4.

  7. J. B. Gunn, IBM J. Res. Develop. 8, 141 (1964).

    Article  Google Scholar 

  8. M. Hansen and K. Andeko, Constitution of Binary Alloys (McGraw-Hill, New York, 1958), 206 pp.

  9. T. Kim and D. D. L. Chung, J. Vac. Sci. Technol. B 4, 762 (1986).

    Article  CAS  Google Scholar 

  10. P. Auvray, A. Guivarc’h, H. L’Haridon, and J.P. Mercier, Thin Solid Films 127, 39 (1985).

    Article  CAS  Google Scholar 

  11. G. S. Marlow, M. B. Das, and L. Tongson, Solid State Electron. 26, 259 (1983).

    Article  CAS  Google Scholar 

  12. A. A. Lakhani, R. C. Potter, and D. M. Beyea, Semicond. Sci. Technol. 3, 605 (1988).

    Article  CAS  Google Scholar 

  13. N. Braslau, J. B. Gunn, and J. L. Staples, Solid State Electron. 10, 381 (1967).

    Article  CAS  Google Scholar 

  14. J. L. Staples, U.S. Patent 3,386,867 (1968).

  15. J. B. Gunn, IEEE Trans. Electron. Dev. 23, 705 (1976).

    Article  Google Scholar 

  16. C. R. M. Grovenor, Properties of Gallium Arsenide, 2nd ed. (Inspec EMIS Datareviews Series no. 2, 1989), 403 pp.

  17. A. Piotrowska and E. Kaminska, Thin Solid Films 193/194, 511 (1990).

    Article  Google Scholar 

  18. Y. Robinson, Solid State Electron. 18, 331 (1976).

    Article  Google Scholar 

  19. M. Wittemer, R. Pretorius, J.W. Mayer, and M-A. Nicolet, Solid State Electron. 20, 433 (1977).

    Article  Google Scholar 

  20. L. Weiss and H. L. Hartnagel, Electron. Lett. 11, 263 (1975).

    Article  CAS  Google Scholar 

  21. J. S. Harris, Y. Nannichi, G. L. Pearson, and G. F. Davis, J. Appl. Phys. 40, 4575 (1969).

    Article  CAS  Google Scholar 

  22. M. Andrews and N. Holonyak, Solid State Electron. 15, 601 (1972).

    Article  CAS  Google Scholar 

  23. M. Otsubo, H. Kumabe, and H. Miki, Solid State Electron. 20, 617 (1977).

    Article  CAS  Google Scholar 

  24. W. T. Anderson, A. Christou, and J. Davey, IEEE J. Solid State Circ. SC-13, 4, 430 (1978).

    Article  Google Scholar 

  25. N. Braslau, J. Vac. Sci. Technol. 19 (3), 803 (1981).

    Article  CAS  Google Scholar 

  26. W. Patrick, W. S. Mackie, S. P. Beaumont, and C. D. W. Wilkenson, Appl. Phys. Lett. 48, 986 (1986).

    Article  CAS  Google Scholar 

  27. D. Sigurd, G. Ottaviani, V. Marrello, J. W. Mayer, and J. O. McCaldin, J. Non-Cryst. Solids 12, 135 (1975).

    Article  Google Scholar 

  28. M. N. Yoder, Solid State Electron. 23, 117 (1980).

    Article  CAS  Google Scholar 

  29. P. O’Connor, A. Dori, M. Feuer, and R. Vounckx, IEEE Trans. Electron. Dev. 34, 765 (1987).

    Article  Google Scholar 

  30. T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, J. Appl. Phys. 54, 6952 (1983).

    Article  CAS  Google Scholar 

  31. T. C. Shen, G. B. Gao, and H. Morkoc, J. Vac. Sci. Technol. B 10 (5), 2113 (1992).

    Article  CAS  Google Scholar 

  32. R. E. Williams, Gallium Arsenide Processing Techniques (Artech House, Inc., Dedham, MA, 1984), 406 pp.

  33. C. R. M. Grovenor, Thin Solid Films (Switzerland) 104, 409 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Zhang, Z., Zhang, X. et al. Effect of Ti Substitution on the Microstructure and Properties of Zr–Mn–V–Ni AB2 Type Hydride Electrode Alloys. Journal of Materials Research 14, 12 (1999). https://doi.org/10.1557/JMR.1999.0174

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/JMR.1999.0174

Navigation