Skip to main content
Log in

Structural, morphology, and hydrogenation properties of non-stoichiometric alloy (Ti0.75 Zr0.25)1.05 Mn0.8CrTM0.2 (TM = Cr, Mo, and Nb)

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-stoichiometric AB2 alloys with (Ti0.75Zr0.25)1.05Mn0.8CrTM0.2 (TM = Cr, Mo, and Nb) formulation were synthesized using an arc-melting method in an argon atmosphere to optimize storage, activation, and kinetic reaction properties of hydrogen. The structural, morphological, and hydrogen storage properties of the alloys were examined using X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray mapping, and volumetric method, respectively. The results indicate that the Mo sample exhibits the highest hydrogen storage capacity at 1.34 wt%. This result is due to the solid solution phase (TiMo), which acts as a catalyst and facilitates hydrogen absorption. The best value of the plateau slope for the Nb sample at room temperature was 0.65, and the hysteresis coefficient was 0.239 for the Mo sample. In addition, the dissociation enthalpy (∆HDES) and entropy (∆SDES) for the Nb sample were 31.04 kJ mol−1 and 103.93 J mol−1 K−1, respectively. From the analysis of the hydrogen absorption kinetic curves, it was found that the reaction kinetic behavior is consistent with the Jander model. Furthermore, activation energy values of the alloys were calculated at a pressure of 13 bar and the range of temperature from 298 to 328 K. We obtained Ea(Cr) = 14.02, Ea(Mo) = 10.92, and Ea(Nb) = 10.23 kJ mol−1. Based on the results, the Nb sample showed good absorption/desorption plateau pressure properties with small hysteresis and slope.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data and code availability

Upon on the request, they can be obtained in an electronic file.

References

  1. Abe JO, Popoola AP, Ajenifuja E, Popoola OM (2019) Hydrogen energy, economy and storage: review and recommendation. Int J Hydrog Energy 44:15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068

    Article  CAS  Google Scholar 

  2. Dogan B (2006) Hydrogen storage tank systems and materials selection for transport applications. In: ASME pressure vessels and piping conference. 47578: 571–578. https://doi.org/10.1115/PVP2006-ICPVT-11-93868

  3. Ogden JM (1999) Developing an infrastructure for hydrogen vehicles: a Southern California case study. Int J Hydrog Energy 24:709–730. https://doi.org/10.1016/S0360-3199(98)00131-1

    Article  CAS  Google Scholar 

  4. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hydrog Energy 32:1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022

    Article  CAS  Google Scholar 

  5. Niemann MU, Srinivasan SS, Phani AR, Kumar A, Goswami DY, Stefanakos EK (2008) Nanomaterials for hydrogen storage applications: a review. J Nanomaterials 2008:1–9. https://doi.org/10.1155/2008/950967

    Article  Google Scholar 

  6. Murshidi JA, Paskevicius M, Sheppard DA, Buckley CE (2011) Structure, morphology and hydrogen storage properties of a Ti0.97Zr0.019V0.439Fe0.097Cr0.045Al0.026Mn1.5 alloy. Int J Hydrog Energy 36:7587–7593. https://doi.org/10.1016/j.ijhydene.2011.03.137

    Article  CAS  Google Scholar 

  7. Young K, Nei J, Huang B, Fetcenko MA (2011) Studies of off-stoichiometric AB2 metal hydride alloy: Part2. Hydrogen storage and electrochemical properties. Int J Hydrog Energy 36:11146–11154. https://doi.org/10.1016/j.ijhydene.2011.05.056

    Article  CAS  Google Scholar 

  8. Mishra SS, Yadav TP, Srivastava ON, Mukhopadhyay NK, Biswas K (2020) Formation and stability of C14 type Laves phase in multi component high-entropy alloys. J Alloy Compd 832:153764. https://doi.org/10.1016/j.jallcom.2020.153764

    Article  CAS  Google Scholar 

  9. Moriwaki Y, Gamo T, Iwaki T (1991) Control of hydrogen equilibrium pressure for C14-type laves phase alloys. J Less Common Met 172:1028–1035. https://doi.org/10.1016/S0022-5088(06)80008-1

    Article  Google Scholar 

  10. Marinin VS, Umerenkova KR, Volovchuk OV (2011) Hydrogen sorption properties of hexagonal laves phase TiMn1.5 intermetallic compound. Int J Hydrog Energy 36:1359–1363. https://doi.org/10.1016/j.ijhydene.2010.06.129

    Article  CAS  Google Scholar 

  11. Xu YH, Wang G, Chen CP, Wang QD, Wang X (2007) The structure and electrode properties of non-stoichiometric A1.2B2 type C14 Laves alloy and the effect of surface modification. Int J Hydrog Energy 32:1050–1058. https://doi.org/10.1016/j.ijhydene.2006.07.007

    Article  CAS  Google Scholar 

  12. Kandavel M, Bhat VV, Rougier A, Aymard L, Nazri GA, Tarascon JM (2008) Improvement of hydrogen storage properties of the AB2 Laves phase alloys for automotive application. Int J Hydrog Energy 33:3754–3761. https://doi.org/10.1016/j.ijhydene.2008.04.042

    Article  CAS  Google Scholar 

  13. Au M, Pourarian F, Sankar SG, Wallace WE, Zhang L (1995) TiMn2-based alloys as high hydrogen storage materials. Mater Sci Eng B 33:53–57. https://doi.org/10.1016/0921-5107(94)01212-1

    Article  Google Scholar 

  14. Gamo T, Moriwaki Y, Yanagihara N, Yamashita T, Iwaki T (1985) Formation and properties of titanium-manganese alloy hydrides. Int J Hydrog Energy 10:39–47. https://doi.org/10.1016/0360-3199(85)90134-X

    Article  CAS  Google Scholar 

  15. Liu BH, Kim DM, Lee KY, Lee JY (1996) Hydrogen storage properties of TiMn2-based alloys. J Alloy Compd 240:214–218. https://doi.org/10.1016/0925-8388(96)02245-1

    Article  CAS  Google Scholar 

  16. Yadav TP, Shahi RR, Srivastava ON (2012) Synthesis, characterization and hydrogen storage behaviour of AB2 (ZrFe2, Zr(Fe0.75V0.25) 2, Zr (Fe0.5V0.5) 2 type materials. Int J Hydrog Energy 37:3689–3696. https://doi.org/10.1016/j.ijhydene.2011.04.210

    Article  CAS  Google Scholar 

  17. Yadav TP, Mukhopadhyay S, Mishra SS, Mukhopadhyay NK, Srivastava ON (2017) Synthesis of a single phase of high-entropy laves intermetallics in the Ti–Zr–V–Cr–Ni equiatomic alloy. Philos Mag Lett 97:494–503. https://doi.org/10.1080/09500839.2017.1418539

    Article  CAS  Google Scholar 

  18. Xu YH, Chen CP, Geng WX, Wang QD (2001) The hydrogen storage properties of Ti–Mn-based C14 Laves phase intermetallics as hydrogen resource for PEMFC. Int J Hydrog Energy 26:593–596. https://doi.org/10.1016/S0360-3199(00)00124-5

    Article  CAS  Google Scholar 

  19. Park JG, Jang HY, Han SC, Lee PS, Lee JY (2002) Hydrogen storage properties of TiMn2-based alloys for metal hydride heat pump. Mater Sci Eng A 329:351–355. https://doi.org/10.1016/S0921-5093(01)01598-2

    Article  Google Scholar 

  20. Komeili M, Arabi H, Yusupov RV, Ghorbani SR, Vagizov FG, Pourarian F (2021) Structural and hydrogen absorption/desorption properties of Zr2 (Co0.5Fe0.2Ni0.2V0.1) intermetallic alloy. Int J Hydrog Energy 46:19060–19073. https://doi.org/10.1016/j.ijhydene.2021.03.045

    Article  CAS  Google Scholar 

  21. Lototsky MV, Yartys VA, Marinin VS, Lototsky NM (2003) Modelling of phase equilibria in metal–hydrogen systems. J Alloy Compd 356:27–31. https://doi.org/10.1016/S0925-8388(03)00095-1

    Article  CAS  Google Scholar 

  22. Beeri O, Cohen D, Gavra Z, Johnson JR, Mintz MH (1998) High-pressure studies of the TiCr1.8-H2 system statistical thermodynamics above the critical temperature. J Alloy Compd 267:113–120. https://doi.org/10.1016/S0925-8388(97)00521-5

    Article  CAS  Google Scholar 

  23. Song X, Zhang Z, Zhang X, Lei Y, Wang Q (1999) Effect of Ti substitution on the microstructure and properties of Zr–Mn–V–Ni AB2 type hydride electrode alloys. J Mater Res 14:1279–1285. https://doi.org/10.1557/JMR.1999.0174

    Article  CAS  Google Scholar 

  24. Huot J, Akiba E, Ishido Y (1995) Crystal structure of multiphase alloys (Zr, Ti)(Mn, V)2. J Alloy Compd 231:85–89. https://doi.org/10.1016/0925-8388(95)01842-5

    Article  CAS  Google Scholar 

  25. Ulmer U, Dieterich M, Pohl A, Dittmeyer R, Linder M, Fichtner M (2017) Study of the structural, thermodynamic and cyclic effects of vanadium and titanium substitution in laves-phase AB2 hydrogen storage alloys. Int J Hydrog Energy 42:20103–20110. https://doi.org/10.1016/j.ijhydene.2017.06.137

    Article  CAS  Google Scholar 

  26. Prabhu YT, Rao KV, Kumar VS, Kumari BS (2014) X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J Nano Sci Eng. https://doi.org/10.4236/wjnse.2014.41004

    Article  Google Scholar 

  27. Jiang L, Tu Y, Tu H, Chen L (2015) Microstructures and hydrogen storage properties of ZrFe2.05−xVx (x= 0.05–0.20) alloys with high dissociation pressures for hybrid hydrogen storage vessel application. J Alloy Compd 627:161–165. https://doi.org/10.1016/j.jallcom.2014.12.045

    Article  CAS  Google Scholar 

  28. Kumar A, Yadav TP, Mukhopadhyay NK (2022) Notable hydrogen storage in Ti–Zr–V–Cr–Ni high entropy alloy. Int J Hydrog Energy 47:22893–22900. https://doi.org/10.1016/j.ijhydene.2022.05.107

    Article  CAS  Google Scholar 

  29. Li SL, Chen W, Chen DM, Yang K (2009) Effect of long-term hydrogen absorption/desorption cycling on hydrogen storage properties of MmNi3.55Co0.75Mn0.4Al0.3. J Alloy Compd 474:164–168. https://doi.org/10.1016/j.jallcom.2008.06.154

    Article  CAS  Google Scholar 

  30. Broom DP (2011) Hydrogen storage materials: the characterisation of their storage properties. Springer, London

    Book  Google Scholar 

  31. Checchetto R, Trettel G, Miotello A (2003) Sievert-type apparatus for the study of hydrogen storage in solids. Meas Sci Technol 15:127. https://doi.org/10.1088/0957-0233/15/1/017

    Article  CAS  Google Scholar 

  32. Zhang TB, Wang XF, Hu R, Li JS, Yang XW, Xue X (2012) Hydrogen absorption properties of Zr(V1−xFex)2 intermetallic compounds. Int J Hydrog Energy 37:2328–2335. https://doi.org/10.1016/j.ijhydene.2011.10.089

    Article  CAS  Google Scholar 

  33. Akiba E, Iba H (1998) Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 6:461–470. https://doi.org/10.1016/S0966-9795(97)00088-5

    Article  CAS  Google Scholar 

  34. Ponsoni JB, Aranda V, da Silva NT, Strozi RB, Botta WJ, Zepon G (2022) Design of multicomponent alloys with C14 Laves phase structure for hydrogen storage assisted by computational thermodynamic. Acta Mater 240:118317. https://doi.org/10.1016/j.actamat.2022.118317

    Article  CAS  Google Scholar 

  35. Gross Karl J, et al (2016) Recommended best practices for the characterization of storage properties of hydrogen storage materials. EMN-HYMARC (EMN-HyMARC); National Renewable Energy Lab. Golden, United States

  36. Chen Z, Xiao X, Chen L, Fan X, Liu L, Li S, Ge H, Wang Q (2014) Influence of Ti super-stoichiometry on the hydrogen storage properties of Ti1+xCr1.2Mn0.2Fe0.6 (x= 0–0.1) alloys for hybrid hydrogen storage application. J Alloy Compd 585:307–311. https://doi.org/10.1016/j.jallcom.2013.09.141

    Article  CAS  Google Scholar 

  37. Yang XW, Zhang TB, Hu R, Li JS, Xue XY, Fu HZ (2010) Microstructure and hydrogenation thermokinetics of ZrTi0.2V1.8 alloy. Int J Hydrog Energy 35:11981–11985. https://doi.org/10.1016/j.ijhydene.2010.08.065

    Article  CAS  Google Scholar 

  38. Komeili M, Arabi H, Pourarian F (2023) Structural investigation and hydrogenation properties of TiZrXMnFeNi (X= Cr, Mo, and W) high entropy alloys. J Alloy Compd 967:171672. https://doi.org/10.1016/j.jallcom.2023.171672

    Article  CAS  Google Scholar 

  39. Shelyapina MG (2019) Metal hydrides for energy storage. In: Handbook of ecomaterials. pp 775–810. https://doi.org/10.1007/978-3-319-68255-6

  40. Kumar A, Yadav TP, Shaz MA, Mukhopadhyay NK (2023) Hydrogen storage in C14 type TiVZrMnCoFe high entropy alloy. arXiv preprint arXiv:2301.04942. https://doi.org/10.48550/arXiv.2301.04942

  41. Huheey JE, et al (2006) Inorganic chemistry: principles of structure and reactivity. 2006: Pearson Education India

  42. Cekić B, Ćirić K, Iordoc M, Marković S, Mitrić M, Stojić D (2013) Kinetics of hydrogen absorption in Zr-based alloys. J Alloy Compd 559:162–166. https://doi.org/10.1016/j.jallcom.2013.01.104

    Article  CAS  Google Scholar 

  43. Jander W (1927) Reaktionen im festen Zustande bei höheren Temperaturen. Reaktionsgeschwindigkeiten endotherm verlaufender Umsetzungen. Z Anorg Allg Chem 163:1–30. https://doi.org/10.1002/zaac.19271630102

    Article  CAS  Google Scholar 

  44. Hariyadi A, Suwarno S, Denys RV, von Colbe JB, Sætre TO, Yartys V (2022) Modeling of the hydrogen sorption kinetics in an AB2 laves type metal hydride alloy. J Alloy Compd 893:162135. https://doi.org/10.1016/j.jallcom.2021.162135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ferdowsi University of Mashhad (Grand no. 3/58195).

Author information

Authors and Affiliations

Authors

Contributions

KA contributed to the conceptualization, methodology, visualization, formal analysis, investigation, and writing—original draft. HA was involved in the supervision of the research, validation, resources, methodology, and writing—review and final editing. SG assisted in the supervision and writing—review and editing. MK contributed to the validation, formal analysis, and writing—review and editing.

Corresponding author

Correspondence to Hadi Arabi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Naiqin Zhao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnssar, K., Arabi, H., Ghorbani, S. et al. Structural, morphology, and hydrogenation properties of non-stoichiometric alloy (Ti0.75 Zr0.25)1.05 Mn0.8CrTM0.2 (TM = Cr, Mo, and Nb). J Mater Sci 59, 1665–1678 (2024). https://doi.org/10.1007/s10853-023-09265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09265-x

Navigation