Skip to main content
Log in

Commonalties of the influence of lower valent A-site and B-site modifications on lead zirconate titanate ferroelectrics and antiferroelectrics

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Studies of the structure-property relations of lead zirconate titanate (PZT) modified with lower valent substitutions on the A- and B-sites have been performed as a function of substituent concentration. These investigations have yielded common changes induced by these substitutions on ferroelectric phases. The commonalties are the presence of fine domains and polarization pinning effects. Differences in domain morphologies were observed between the rhombohedral and tetragonal ferroelectric phases. Rhombohedral ferroelectrics were found to exhibit “wavy” domain patterns with increasing dopant concentrations, whereas a lenticular domain shape was preserved as the domain size was decreased for tetragonal ferroelectrics. These differences were explained in terms of different pinning mechanisms based on the differences in local elastic strain accommodations. Investigations of high Zr-content PZT have revealed that the ferroelectric rhombohedral phase becomes stabilized over the antiferroelectric orthorhombic with increasing concentrations of lower valent modifications. This change was explained in terms of the enhanced coupling between oxygen octahedra due to the bonding of oxygen-vacancy dipoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kulcsar, J. Am. Ceram. Soc. 42, 49 (1959).

    Article  CAS  Google Scholar 

  2. F. Kulcsar, J. Am. Ceram. Soc. 42, 343 (1959).

    Article  CAS  Google Scholar 

  3. S. Takahashi and M. Takahashi, Jpn. J. Appl. Phys. 11, 31 (1972).

    Article  CAS  Google Scholar 

  4. R. Gerson, J. Appl. Phys. 31, 188 (1960).

    Article  CAS  Google Scholar 

  5. V. S. Postnikov, V. S. Pavlov, and S. K. Turkov, J. Phys. Chem. Solids 31, 1785 (1970).

    Article  CAS  Google Scholar 

  6. K. Carl and K. Hardtl, Ferroelectrics 17, 473 (1978).

    Article  CAS  Google Scholar 

  7. D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, J. Appl. Phys. 76, 4305 (1994).

    Article  CAS  Google Scholar 

  8. W. L. Warren and D. Dimos, Appl. Phys. Lett. 64, 866 (1994).

    Article  CAS  Google Scholar 

  9. D. Dimos, H. N. Al-Shareef, W. L. Warren, and B. A. Tuttle, J. Appl. Phys. 80, 1682 (1996).

    CAS  Google Scholar 

  10. G. Hartling, Bull. Am. Ceram. Soc. 73, 93 (1994).

    Google Scholar 

  11. K. Uchino, Proc. 1st European Conf. on Smart Structures and Materials, Glasgow, 1992.

  12. L. E. Cross, J. Intelligent Materials Systems and Structures 6, 55 (1995).

    Article  CAS  Google Scholar 

  13. Q. Tan, Z. K. Xu, J-F. Li, and D. Viehland, J. Appl. Phys. 80, 5866 (1996).

    Article  CAS  Google Scholar 

  14. Q. Tan, J-F. Li, and D. Viehland, Philos. Mag. B 76, 59 (1996).

    Article  Google Scholar 

  15. Q. Tan, Z. Xu, J-F. Li, and D. Viehland, Appl. Phys. Lett. 71, 1062 (1997).

    Article  CAS  Google Scholar 

  16. C. R. Griffiths and R. Russell, J. Am. Ceram. Soc. 55, 110 (1972).

    Article  CAS  Google Scholar 

  17. G. H. Johker, J. Am. Ceram. Soc. 55, 53 (1972).

    Google Scholar 

  18. H. Dederichs and G. Arlt, Ferroelectrics 68, 281 (1986).

    Article  CAS  Google Scholar 

  19. G. Arlt and H. Neumann, Ferroelectrics 87, 109 (1988).

    Article  CAS  Google Scholar 

  20. U. Robels, L. Schneider-Strormann, and G. Arlt, Ferroelectrics 168, 301 (1995).

    CAS  Google Scholar 

  21. X. Dai, Z. Xu, and D. Viehland, J. Appl. Phys. 77, 5088 (1995).

    Google Scholar 

  22. Y. Fujii, S. Hoshino, Y. Yamada, and G. Shirane, Phys. Rev. B 9, 4549 (1974).

    Article  CAS  Google Scholar 

  23. Z. Xu, X. Dai, J-F. Li, and D. Viehland, Appl. Phys. Lett. 66, 2963 (1995).

    Article  CAS  Google Scholar 

  24. D. Viehland, Z. Xu, and D. A. Payne, J. Appl. Phys. 74, 7454 (1993).

    Article  CAS  Google Scholar 

  25. T. Mitsui, I. Tatsuzaki, and E. Nakamura, in An Introduction to the Physics of Ferroelectrics (Gordon and Breach Science Publishers, New York, 1976), p. 197.

  26. Q. Tan and D. Viehland, J. Am. Ceram. Soc. 81, 328 (1998).

    Article  CAS  Google Scholar 

  27. K. Parlinski, Y. Watanabe, K. Ohno, and Y. Kawazoe, J. Mater. Res. 10, 1864 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Q., Xu, Z. & Viehland, D. Commonalties of the influence of lower valent A-site and B-site modifications on lead zirconate titanate ferroelectrics and antiferroelectrics. Journal of Materials Research 14, 465–475 (1999). https://doi.org/10.1557/JMR.1999.0067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0067

Navigation