Skip to main content
Log in

Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The feasibility of the acetylacetonate-Ti isopropoxide complex as a new precursor for synthesis of Ti-based perovskite particles under hydrothermal conditions has been demonstrated. Perovskite powders including BaTiO3, PbTiO3, PZT, PLZT, and SrTiO3 were prepared by reacting the acetylacetonate-modified Ti precursor in metal acetate aqueous salt solution under hydrothermal conditions. Synthesis parameters including reaction time and temperature, feedstock concentration, nd reaction medium significantly influence particle characteristics of the hydrothermally derived erovskite powders. It is proposed that use of the acetylacetonate-modified Ti precursor promotes ntimate mixing among multicomponent reacting species at the molecular level and promotes article formation through a dissolution/recrystallization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (Chapman & Hall, London, UK, 1990).

    Google Scholar 

  2. L.L. Hench and J. K. West, Principles of Electronic Ceramics (John Wiley & Sons, New York, 1990).

    Google Scholar 

  3. B. Jaffe, W. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, Inc., New York, 1971).

    Google Scholar 

  4. Y. Suyama and T. Yamaguchi, in Fundamentals of Ceramic Engineering, edited by P. Vincenzini (Elsevier Science Publishers, London, UK, 1991), p. 121.

    Chapter  Google Scholar 

  5. W. Johnson, Jr., in Advances in Ceramics Vol. 21, Ceramic Powder Science, edited by G. L. Messing, K. S. Mazdiyasni, J. W. McCauley, and R. A. Haber (The American Ceramic Society Inc., Westerville, OH, 1987), p. 3.

  6. T.R. Shrout and S. L. Swartz, in Proceedings of 8th IEEE International Symposium Applications of Ferroelectrics, edited by M. Liu, A. Safari, A. Kingon, and G. H. Heartling (IEEE Service Center, Piscataway, NJ, 1992), p. 80.

  7. R.E. Riman, in Surface and Colloid Chemistry in Advanced Ceramic Processing, Surfactant Science Series Vol. 51, edited by R.J. Pugh and L. Bergstrom (Marcel Dekker Inc., New York, 1994), p. 29.

  8. S. Hirano, Am. Ceram. Soc. Bull. 66, 1342 (1987).

    CAS  Google Scholar 

  9. W.J. Dawson, Am. Ceram. Soc. Bull. 67, 1673 (1988).

    CAS  Google Scholar 

  10. J. Livage, M. Henry, J. P. Jolivet, and C. Sanchez, MRS. Bull. 15, 18 (1990).

    Article  CAS  Google Scholar 

  11. M.M. Lencka and R.E. Riman, Chem. Mater. 5, 61 (1993).

    Article  CAS  Google Scholar 

  12. M.M. Lencka and R.E. Riman, J. Am. Ceram. Soc. 76, 2649 (1993).

    Article  CAS  Google Scholar 

  13. M.M. Lencka and R. E. Riman, Ferroelectrics 151, 159 (1994).

    Article  CAS  Google Scholar 

  14. M.M. Lencka and R.E. Riman, Chem. Mater. 7, 18 (1995).

    Article  CAS  Google Scholar 

  15. P.K. Dutta and J. R. Gregg, Chem. Mater. 4, 843 (1992).

    Article  CAS  Google Scholar 

  16. J. Moon, T. Li, J.H. Adair, and S. A. Costantino, unpublished.

  17. R.W. Whatmore, in Fundamentals of Ceramic Engineering, edited by P. Vincenzini (Elsevier Science Publishers, London, UK, 1991), p. 223.

    Chapter  Google Scholar 

  18. A.P. Singh, S. K. Mishra, D. Pandey, C. D. Prasad, and R. Lal, J. Mater. Sci. 28, 5050 (1993).

    Article  CAS  Google Scholar 

  19. C.M.R. Bastos, M. Jafelicci, Jr., J. A. Varela, and M. A. Zaghette, in Ceramics Today-Tomorrow’s Ceramics, edited by P. Vincenzini (Elsevier Science Publisher, London, UK, 1991), p. 1983.

  20. A.D. Randolph and M.A. Larson, Theory of Particulate Processes: Analysis and Techniques of Continuous Crystallization (Academic Press Inc., San Diego, CA, 1988).

    Google Scholar 

  21. J. Estrin, in Handbook of Industrial Crystallization, edited by A. S. Myerson (Butterworth-Heinemann, Boston, MA, 1993), p. 131.

  22. S-B. Cho, S. Venigalla, and J. H. Adair, J. Am. Ceram. Soc. 79, 88 (1996).

    Article  CAS  Google Scholar 

  23. S-B. Cho, S. Venigalla, and J. H. Adair, in Ceramic Transaction, Vol. 54, Science, Technology, and Applications of Colloidal Suspensions, edited by J. H. Adair, J. A. Casey, C.A. Randall, and S. Venigalla (The American Ceramic Society, Westerville, OH, 1995), p. 135.

  24. J. Livage, in Chemical Processing of Ceramics, edited by B. I. Lee and E. J. A. Pope (Marcel Dekker Inc., New York, 1994), p. 3.

  25. P.P. Phule and F. Khairulla, in Ceramics Transactions, Vol. 12, Ceramic Powder Science III, edited by G. L. Messing, S-I. Hirano, Jr., and H. Hausner (The American Ceramic Society Inc., Westerville, OH, 1990), p. 725.

  26. W.E. Van Der Linden and G. Den Boef, Anal. Chim. Acta 37, 179–186 (1967).

  27. R. Gut, E. Schmid, and J. Serralach, Helv. Chim. Acta 54, 609–624 (1971).

    Article  CAS  Google Scholar 

  28. J. A. Riddick, W. B. Bunger, and T.K. Sakano, Organic Solvents: Physical Properties and Methods of Purification, Techniques in Chemistry, Volume II (John Wiley Sons, Inc., New York, 1986), p. 359.

  29. E.P. Serjeant and B. Dempsey, Ionisation Constants of Organic Acids in Aqueous Solution (Pergamon Press, New York, 1979), pp. 117–118.

    Google Scholar 

  30. T.E. Duabert and R. P. Danner, Physical and Thermodynamic Properties of Pure Chemicals (Hemisphere Publishing Corp., New York, 1976).

    Google Scholar 

  31. A.E. Martell and R. M. Smith, Critical Stability Constants, Volume 3: Other Organic Ligands (Plenum Press, New York, 1974), pp. 244–247.

    Google Scholar 

  32. D.D. Perrin, Stability Constants of Metal-Ion Complexes, Part B (Pergamon Press, New York, 1979), pp. 273–280.

    Google Scholar 

  33. J. Moon, T. Li, C.A. Randall, and J. H. Adair, J. Mater. Res. 12, 189–197 (1997).

    Article  CAS  Google Scholar 

  34. R.P. Denkewics, Jr., K. S. TenHuisen, and J. H. Adair, J. Mater. Res. 5, 2698 (1990).

    Google Scholar 

  35. G.A. Rossetti, Jr., D. J. Watson, R.E. Newnham, and J. H. Adair, J. Cryst. Growth 116, 251 (1992).

    CAS  Google Scholar 

  36. J. Moon, A. Morrone, S. A. Costantino, and J. H. Adair, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, J., Kerchner, J.A., Krarup, H. et al. Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts. Journal of Materials Research 14, 425–435 (1999). https://doi.org/10.1557/JMR.1999.0061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0061

Navigation