Skip to main content
Log in

Analytic embedded atom method potentials for face-centered cubic metals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The universal form of embedding function suggested by Banerjea and Smith together with a pair-potential of the Morse form are used to obtain embedded atom method (EAM) potentials for fcc metals: Cu, Ag, Au, Ni, Pd, and Pt. The potential parameters are determined by fitting to the Cauchy pressure (C12C44)/2, shear constant GV = (C11C12 + 3C44)/5, and C44, the cohesive energy and the vacancy formation energy. The obtained parameters are utilized to calculate the unrelaxed divacancy binding energy and the unrelaxed surface energies of three low-index planes. The calculated quantities are in reasonable agreement with the experimental values except perhaps the divacancy energy in a few cases. In a further application, lattice dynamics of these metals are discussed using the present EAM potentials. On comparison with experimental phonons, the agreement is good for Cu, Ag, and Ni, while in the other three metals, Au, Pd, and Pt, the agreement is not so good. The phonon spectra are in reasonable agreement with the earlier calculations. The frequency spectrum and the mean square displacement of an atom in Cu are in agreement with the experiment and other calculated results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Johnson and W.D. Wilson, Interatomic Potentials and Simulation of Lattice Defects, edited by P. C. Gehlen, J. R. Beeler, and R. I. Jaffee (Plenum, New York, 1971).

    Google Scholar 

  2. R. A. Johnson, J. Phys. F. 3, 295 (1973).

    Article  CAS  Google Scholar 

  3. M. I. Baskes and C. F. Melius, Phys. Rev. B 20, 3197 (1979).

    Article  CAS  Google Scholar 

  4. J. K. Norskov and N.D. Lang, Phys. Rev. B 21, 2131 (1980).

    Article  Google Scholar 

  5. M.J. Stott and E. Zaremba, Phys. Rev. B 22, 1564 (1980).

    Article  CAS  Google Scholar 

  6. M.S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  7. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  8. M.S. Daw, Phys. Rev. B 39, 7441 (1989), and references contained therein.

    Article  CAS  Google Scholar 

  9. R.G. Hoagland, M.S. Daw, S. M. Foiles, and M.I. Baskes, J. Mater. Res. 5, 313 (1990).

    Article  CAS  Google Scholar 

  10. M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Article  CAS  Google Scholar 

  11. S.M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  CAS  Google Scholar 

  12. R.A. Johnson, Phys. Rev. B 37, 3924 (1988).

    Article  CAS  Google Scholar 

  13. D.J. Oh and R. A. Johnson, J. Mater. Res. 3, 471 (1988).

    Article  CAS  Google Scholar 

  14. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

    Article  CAS  Google Scholar 

  15. J. Mei, J.W. Davenport, and G. W. Fernando, Phys. Rev. B 43, 4653 (1990).

    Article  Google Scholar 

  16. K.W. Jacobson, J. K. Norskov, and M. J. Puska, Phys. Rev. B 35, 7423 (1987).

    Article  Google Scholar 

  17. M.J. Puska, R.M. Nieminen, and M. Manninen, Phys. Rev. B 24, 3037 (1981).

    Article  CAS  Google Scholar 

  18. A. Banerjea and J.R. Smith, Phys. Rev. B 37, 6632 (1988).

    Article  CAS  Google Scholar 

  19. R.A. Johnson and D. J. Oh, J. Mater. Res. 4, 1195 (1989).

    Article  CAS  Google Scholar 

  20. S.M. Foiles, Phys. Rev. B 32, 3409 (1986).

    Article  Google Scholar 

  21. D.J. Oh and R. A. Johnson, Atomistic Simulation of Materials, edited by V. Vitek and D. Srolovitz (Plenum, New York, 1989), p. 233.

    Chapter  Google Scholar 

  22. M.I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  CAS  Google Scholar 

  23. E. Clementi and C. Roetti, At. Data Nucl. Data Tables 14, 177 (1974);

    Article  CAS  Google Scholar 

  24. A.D. McLean and R. S. McLean, At. Data Nucl. Data Tables 26, 197 (1981).

    Article  CAS  Google Scholar 

  25. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (Hand Book, Cambridge, MA, 1971).

    Google Scholar 

  26. R. W. Bulluffi, J. Nucl. Mater. 69/70, 240 (1978).

    Article  Google Scholar 

  27. R. W. Siegel, J. Nucl. Mater. 69/70, 117 (1978).

    Article  Google Scholar 

  28. W. Wycisk and M. Feller-Kniepmeier, J. Nucl. Mater. 69/70, 616 (1978).

    Article  Google Scholar 

  29. Y. A. Kraftmakher and P. G. Strelkov, in Vacancies and Interstitials in Metals, edited by A. Seeger, D. Schmacher, W. Schilling, and J. Diehl (North-Holland, Amsterdam), p. 59.

  30. R. Pasianot, D. Farkas, and E. J. Savino, Phys. Rev. B 43, 6952 (1991).

    Article  CAS  Google Scholar 

  31. J. B. Adams, S.M. Foiles, and W. G. Wolfer, J. Mater. Res. 4, 102 (1989).

    Article  CAS  Google Scholar 

  32. S.M. Foiles, Phys. Rev. B 32, 7685 (1985).

    Article  CAS  Google Scholar 

  33. A. F. Voter and S. P. Chen, in Characterization of Defects in Materials, edited by R. W. Siegel, J. R. Weertman, and R. Sinclair (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175.

  34. F. Ecolessi, E. Tossati, and M. Perrinello, Phys. Rev. Lett. 57, 719 (1986).

    Article  Google Scholar 

  35. R.A. Johnson, Phys. Rev. B 41, 9717 (1990).

    Article  CAS  Google Scholar 

  36. S.M. Foiles and J. B. Adams, Phys. Rev. B 40, 5909 (1989), and references therein.

    Article  CAS  Google Scholar 

  37. U. Klemradt, B. Drittler, T. Hoshino, R. Zeller, and P. H. Dederichs, Phys. Rev. B 43, 9487 (1991).

    Article  CAS  Google Scholar 

  38. R.M. Nicklow, G. Gilat, H. J. Smith, Raubenheimer, and M.K. Wilkinson, Phys. Rev. 164, 922 (1967).

    Article  CAS  Google Scholar 

  39. W. A. Kamitakahara and B.N. Brockhouse, Phys. Lett. 29A, 639 (1969).

    Article  Google Scholar 

  40. J. W. Lynn, H. G. Smith, and R.M. Nicklow, Phys. Rev. B 8, 3493 (1973).

    Article  CAS  Google Scholar 

  41. R.J. Birgeneau, J. Cordes, G. Dolling, and A. B.D. Woods, Phys. Rev. 136, A1359 (1964).

    Article  Google Scholar 

  42. A.P. Miller and B.N. Brockhouse, Can J. Phys. 49, 704 (1971).

    Article  CAS  Google Scholar 

  43. D.H. Dutton and B. N. Brockhouse, Can. J. Phys. 50, 2915 (1972).

    Article  CAS  Google Scholar 

  44. M. I. Baskes, J.S. Nelson, and A. F. Wright, Phys. Rev. B 40, 6085 (1989);

    Article  CAS  Google Scholar 

  45. M. I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  CAS  Google Scholar 

  46. M.S. Daw and R.D. Hatcher, Solid State Commun. 56, 697 (1985).

    Article  CAS  Google Scholar 

  47. J. S. Nelson, E. C. Sowa, and M. S. Daw, Phys. Rev. Lett. 61, 1977 (1988).

    Article  CAS  Google Scholar 

  48. R. Rebonato and J.Q. Broughton, Philos. Mag. Lett. 55, 225 (1987).

    Article  CAS  Google Scholar 

  49. J. Eridon, Atomistic Simulation of Materials: Beyond Pair Potentials, edited by V. Vitek and D. J. Srolovitz (Plenum, New York, 1989), p. 211;

    Chapter  Google Scholar 

  50. J. Eridon and S. Rao, Philos. Mag. 59, 31 (1989).

    Article  Google Scholar 

  51. C.J. Martin and D. A. O’Connor, Phys. Rev. B 8, 3493 (1977).

    Google Scholar 

  52. Metals Reference Book, edited by C. J. Smith (Butterworth, London, 1976), 5th ed., p. 186, as quoted in Ref. 22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohlong, S.S., Ram, P.N. Analytic embedded atom method potentials for face-centered cubic metals. Journal of Materials Research 13, 1919–1927 (1998). https://doi.org/10.1557/JMR.1998.0271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0271

Navigation