Skip to main content

Embedded Atom Method Model for Close-Packed Metals

  • Chapter
Atomistic Simulation of Materials

Abstract

A simple embedded atom method (EAM)1,2 model for close-packed metals has recently been presented3. In this model, both the electron density function and the two-body potential are taken as exponentially decreasing functions, and the embedding energy was obtained from a modification of the equation of state given by Rose et al.4 using the method developed by Foiles5. In this model, however, the cutoff procedures for the electron density function and the two-body potential were not specified and the embedding energy was a tabulated function of total electron density. Thus, we refined this model by introducing: (1) a smooth cutoff function for the electron density function and the two-body potential, and (2) an analytic form of the embedding energy function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.S. Daw and M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals, Phys. Rev. Lett., 50:1285 (1983).

    Article  CAS  Google Scholar 

  2. M.S. Daw and M.I. Baskes, Embedded atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B, 29:6443 (1985).

    Article  Google Scholar 

  3. D.J. Oh and R.A. Johnson, Simple embedded atom method model for fcc and hcp metals, J. Mater. Res., 3:471 (1988).

    Article  CAS  Google Scholar 

  4. J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante, Universal features of the equation of state of metals, Phys. Rev. B, 29:2963 (1984).

    Article  CAS  Google Scholar 

  5. S.M. Foiles, Calculation of the surface segregation of Ni-Cu alloys using the embedded atom method, Phys. Rev. B, 32:7685 (1985).

    Article  CAS  Google Scholar 

  6. R.A. Johnson, Analytic nearest-neighbor model for fcc metals, Phys. Rev. B, 37:3924 (1988).

    Article  Google Scholar 

  7. A.F. Voter and S.P. Chen, Accurate interatomic potentials for Ni, Al, and Ni3Al, MRS Proceeding, 82:175 (1987).

    Article  CAS  Google Scholar 

  8. M.W. Finnis and J.E. Sinclair, A simple empirical N-body potential for transition metals, Philos. Mag. A, 50:45 (1984).

    Article  CAS  Google Scholar 

  9. S.M. Foiles, M.I. Baskes, and M.S. Daw, Embedded atom method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B, 33:7983 (1986).

    Article  CAS  Google Scholar 

  10. S.M. Foiles, Application of the embedded atom method to liquid transition metals, Phys. Rev. B, 32:3409 (1985).

    Article  CAS  Google Scholar 

  11. R.A. Johnson, Interstitials and vacancies in a iron, Phys. Rev., 134:A1329 (1964).

    Article  Google Scholar 

  12. R.A. Johnson, Point defect calculations for an fcc lattice, Phys. Rev., 145:423 (1966).

    Article  CAS  Google Scholar 

  13. R.A. Johnson, Interatomic potential development in materials science, in: “Computer Simulation in Materials Science”, R.J. Arsenault, J.R. Beeler, Jr., and D.M. Esterling, ed., American Society for Metals, Metals Park (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Oh, D.J., Johnson, R.A. (1989). Embedded Atom Method Model for Close-Packed Metals. In: Vitek, V., Srolovitz, D.J. (eds) Atomistic Simulation of Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5703-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5703-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5705-6

  • Online ISBN: 978-1-4684-5703-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics