Skip to main content
Log in

Thermal evolution of the microstructure of nanosized LaFeO3 powders from the thermal decomposition of a heteronuclear complex, La[Fe(CN)6] · 5H2O

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermal decomposition of a heteronuclear complex, La[Fe(CN)6] · 5H2O, leads to the preparation of nanosized single-phase perovskite-type LaFeO3 powders. The microstructural evolution of LaFeO3 with the temperature has been studied by x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The product of the decomposition at 500 °C consists of nanoporous grains which have the morphology of the complex, but diffracting as a monocrystal of LaFeO3. At the higher temperatures, the nanosized particles start to separate from each other, still keeping the shape of the complex grains and forming soft agglomerates. The formation of LaFeO3 from the complex at low temperatures is facilitated by the formation of an orthorhombic transition phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Wachsman, in Progress in Ceramic Basic Science: Challenge Toward the 21st Century (The Ceramic Society of Japan, Tokyo, Japan, 1996), p. 131.

    Google Scholar 

  2. J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L.R. Pederson, and W. J. Weber, J. Electrochem. Soc. 143, 2722 (1996).

    Article  CAS  Google Scholar 

  3. H. Obayashi and T. Kudo, Nippon Kagaku Kaishi, 1568 (1980).

  4. W. B. Li, H. Yoneyama, and H. Tamura, Nippon Kagaku Kaishi, 761 (1982).

  5. Y. Takahashi and H. Taguchi, J. Mater. Sci. Lett. 3, 251 (1984).

    Article  Google Scholar 

  6. T. Arakawa, H. Kurachi, and J. Shiokawa, J. Mater. Sci. 4, 1207 (1985).

    Article  Google Scholar 

  7. J. P. Lukaszewicz, Sensors and Actuators B 4, 227 (1991).

  8. G. Lu, Y. Xin, B. Quan, L. Sun, and W. Yan, Jilin Daxue Ziran Kexue Xuebao 4, 69 (1992).

  9. M. Mitsuoka, A. Otofuji, and T. Arakawa, Sensors and Actuators B 9, 205 (1992).

    Article  CAS  Google Scholar 

  10. J. Zhang, Y. Lu, G. Wu, and B. Li, Wuji Cailiao Xuebao 7, 37 (1992).

    CAS  Google Scholar 

  11. M. L. Post, B. W. Sanders, and P. Kennepohl, Sensors and Actuators B 13, 272 (1993).

    Article  CAS  Google Scholar 

  12. Y. Matsuura, S. Matsushima, M. Sakamoto, and Y. Sadaoka, J. Mater. Chem. 3, 767 (1993).

    Article  Google Scholar 

  13. E. Traversa, S. Matsushima, G. Okada, Y. Sadaoka, Y. Sakai, and K. Watanabe, Sensors and Actuators B 25, 661 (1995).

    Article  CAS  Google Scholar 

  14. M. Kakihana, J. Sol-Gel Sci. Technol. 6, 7 (1996).

    Article  CAS  Google Scholar 

  15. Chemical Processing of Ceramics, edited by B. I. Lee and E. J. Pope (Marcel Dekker, New York, 1994).

    Google Scholar 

  16. M. Yoshimura, S. T. Song, and S. Somiya, Yogyo Kyokaishi 90, 91 (1982).

    Article  CAS  Google Scholar 

  17. H. M. Zhang, Y. Teraoka, and N. Yamazoe, Chem. Lett., 665 (1987).

  18. W. Yan, L. Sun, M. Liu, and Y. Qin, Yibiao Cailiao 21, 271 (1990).

    CAS  Google Scholar 

  19. A. Furusaki, H. Konno, and R. Furuichi, Nippon Kagaku Kaishi, 612 (1992).

  20. C. D. Chandler, C. Roger, and M. J. Hampden-Smith, Chem. Rev. 93, 1205 (1993).

    Article  CAS  Google Scholar 

  21. M. R. Morelli and R.J. Brook, in Electroceramics IV, edited by R. Waser, S. Hoffmann, D. Bonnenberg, and Ch. Hoffmann (Augustinus Buchhandlung, Aachen, Germany, 1994), p. 1263.

    Google Scholar 

  22. P. K. Gallagher, Mater. Res. Bull. 3, 225 (1968).

    Article  CAS  Google Scholar 

  23. M. Sakamoto, Y. Komoto, H. Hojo, and T. Ishimori, Nippon Kagaku Kaishi, 887 (1990).

  24. S. Nakayama and M. Sakamoto, J. Ceram. Soc. Jpn. 100, 342 (1992).

    Article  CAS  Google Scholar 

  25. M. Sakamoto, K. Matsuki, R. Ohsumi, Y. Nakayama, Y. Sadaoka, S. Nakayama, N. Matsumoto, and H. Okawa, J. Ceram. Soc. Jpn. 100, 1211 (1992).

    Article  CAS  Google Scholar 

  26. Y. Sadaoka, K. Watanabe, Y. Sakai, and M. Sakamoto, J. Ceram. Soc. Jpn. 103, 519 (1995).

    Article  CAS  Google Scholar 

  27. Y. Sadaoka, K. Watanabe, Y. Sakai, and M. Sakamoto, J. Alloys and Compounds 224, 194 (1995).

    Article  CAS  Google Scholar 

  28. Y. Sadaoka, E. Traversa, and M. Sakamoto, Chem. Lett., 177 (1996).

  29. Y. Sadaoka, E. Traversa, and M. Sakamoto, J. Alloys and Compounds 240, 51 (1996).

    Article  CAS  Google Scholar 

  30. Y. Sadaoka, E. Traversa, and M. Sakamoto, J. Mater. Chem. 6, 1355 (1996).

    Article  CAS  Google Scholar 

  31. E. Traversa, P. Nunziante, M. Sakamoto, K. Watanabe, Y. Sadaoka, and Y. Sakai, Chem. Lett., 189 (1995).

  32. E. Traversa, P. Nunziante, M. Sakamoto, and Y. Sadaoka, in Fourth Euro-Ceramics, Vol. 5: Electroceramics, edited by G. Gusmano and E. Traversa (Faenza Editrice, Faenza, Italy, 1995), p. 17.

    Google Scholar 

  33. Y. Sadaoka, E. Traversa, P. Nunziante, and M. Sakamoto, J. Alloys and Compounds 261, 182 (1997).

    Article  CAS  Google Scholar 

  34. S. Nakayama, M. Sakamoto, K. Matsuki, Y. Okimura, R. Ohsumi, Y. Nakayama, and Y. Sadaoka, Chem. Lett., 2145 (1992).

  35. E. Traversa, M. Sakamoto, and Y. Sadaoka, J. Am. Ceram. Soc. 79, 1401 (1996).

    Article  CAS  Google Scholar 

  36. F. Hulliger, M. Landolt, and H. Vetsch, J. Solid State Chem. 18, 283 (1976).

    Article  CAS  Google Scholar 

  37. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (John Wiley, New York, 1986), p. 252.

    Google Scholar 

  38. K. Watanabe, M.En. Thesis, Faculty of Engineering, Ehime University (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traversa, E., Nunziante, P., Sakamoto, M. et al. Thermal evolution of the microstructure of nanosized LaFeO3 powders from the thermal decomposition of a heteronuclear complex, La[Fe(CN)6] · 5H2O. Journal of Materials Research 13, 1335–1344 (1998). https://doi.org/10.1557/JMR.1998.0189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0189

Navigation