Skip to main content
Log in

Anisotropic growth morphology and platelet formation in large grain Y–Ba–Cu–O grown by seeded peritectic solidification

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The characteristic platelet-like structure of large grain superconducting Y–Ba–Cu–O fabricated using peritectic solidification techniques has been documented widely as a key microstructural feature of this material. The platelet formation mechanism is investigated via a detailed comparison of the difference in morphology of YBa2Cu3O7–δ (123) growth fronts propagating along different lattice directions. The development of YBa2Cu3O7–δ dendrites between the growth front and local Y2BaCuO5 (211) particles is observed to be a key feature of the growth mechanism along all directions. Dendrites broaden rapidly for growth fronts propagating along the c-axis due to the enhanced growth rate of Y–Ba–Cu–O in the a-b plane to yield a uniform, regular growth morphology. Dendrite broadening is inhibited for grain growth along the a-b directions, however, due to the slower growth rate along the c-axis, which yields an irregular extended growth front. Growth along the a/b direction commonly results in the formation of regions consisting of 123 dendrites which may connect 211 particles. Continued solidification of the 123 phase in such regions results in the development of platelet structures perpendicular to the crystallographic c-axis in the YBa2Cu3O7–δ phase matrix which may impede the flow of current through the grain in the superconducting state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Fukuyama, K. Seki, T. Takizawa, S. Endou, M. Murakami, H. Takaichi, and N. Koshizuka, in Advances in Superconductivity V, edited by Y. Bando and H. Yamauchi (Proc. 5th Int. Symp. Supercond. Springer-Verlag, Tokyo, Japan, 1993), p. 1313.

    Chapter  Google Scholar 

  2. R. Takahata, H. Ueyama, and A. Kubo, in Advances in Superconductivity V, edited by Y. Bando and H. Yamauchi (Proc. 5th Int. Symp. Supercond. Springer-Verlag, Tokyo, Japan, 1993), p. 1309.

    Chapter  Google Scholar 

  3. F. C. Moon and P. Z. Chang, Appl. Phys. Lett. 56, 22 (1990).

    Article  Google Scholar 

  4. R. Decher, P. N. Peters, R. C. Sisk, E. W. Urban, M. Vlasse, and D. K. Rao, Appl. Supercond. 1, 1265 (1993).

    Article  Google Scholar 

  5. F. C. Moon, P. Z. Chang, H. Hojaji, A. Barkatt, and A. N. Thorpe, Jpn. J. Appl. Phys. 29, 1257 (1990).

    Article  CAS  Google Scholar 

  6. W.K. Chu, K. B. Ma, C.K. McMichael, and M.A. Lamb, Appl. Supercond. 1, 1259 (1993).

    Article  CAS  Google Scholar 

  7. M. Strasik, A. Day, D. Garrigus, K. McCrary, and T. Luhman, presented at European Conference in Applied Superconductivity, Edinburgh, 3–7 July (1995).

  8. M. Murakami, Appl. Supercond. 1, 1157 (1993).

    Article  CAS  Google Scholar 

  9. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  Google Scholar 

  10. D. F. Lee, V. Selvamanikam, and K. Salama, Physica C 165, 480 (1990).

    Article  Google Scholar 

  11. M. Murakami, S. Kotoh, N. Koshizuka, S. Tanaka, T. Matsushita, S. Kambe, and K. Kitazawa, Cryogenics 30, 390 (1990).

    Article  CAS  Google Scholar 

  12. S. Sengupta, D. Shi, Z. Wang, C. Biondo, U. Balachadran, and K. C. Goretta, Physica C 199, 43 (1992).

    Article  CAS  Google Scholar 

  13. V. Chakrapani, D. Balkin, and P. McGinn, Appl. Supercond. 1, 71 (1993).

    Article  CAS  Google Scholar 

  14. M. Lepropre, I. Mont, M. P. Delamare, M. Hervieu, Ch. Simon, J. Provost, G. Desgardin, B. Raveau, J. M. Barbut, D. Bourgault, and D. Braithwaite, Cryogenics 34, 63 (1994).

    Article  CAS  Google Scholar 

  15. D. N. Matthess, J. W. Cochrane, and G. J. Russell, Physica C 249, 255 (1995).

    Article  Google Scholar 

  16. Wai Lo, D. A. Cardwell, C. D. Dewhurst, and S. L. Dung, J. Mater. Res. 11, 786 (1996).

    Article  CAS  Google Scholar 

  17. Y. Yan, D.A. Cardwell, A.M. Campbell, and W.M. Stobbs, J. Mater. Res. 11, 2990 (1996).

    Article  CAS  Google Scholar 

  18. S. Jin, G. W. Kammlott, T. H. Tiefel, T. T. Kodas, T. L. Ward, and D. M. Kroeger, Physica C 181, 57 (1991).

    Article  CAS  Google Scholar 

  19. K. B. Alexander, A. Goyal, D. M. Kroeger, V. Selvamanickam, and K. Salama, Phys. Rev. B 45, 5622 (1992).

    Article  CAS  Google Scholar 

  20. J. Ayache, P. Odier, and N. Pellerin, Supercond. Sci. Technol. 7, 655 (1994).

    Article  CAS  Google Scholar 

  21. C.A. Bateman, J. Zhang, H.M. Chan, and M.P. Harmer, J. Am. Ceram. Soc. 75, 1281 (1992).

    Article  CAS  Google Scholar 

  22. M. Cima, M. Flemings, A. Figucredo, M. Nakade, H. Ishii, H. Brody, and J. Haggerty, J. Appl. Phys. 72, 179 (1992).

    Article  CAS  Google Scholar 

  23. T. Izumi, Y. Nakamura, and Y. Shiohara, J. Mater. Res. 7, 1621 (1992).

    Article  CAS  Google Scholar 

  24. F. Frangi, T. Higuchi, M. Deguchi, and M. Murakami, J. Mater. Res. 10, 2241 (1995).

    Article  CAS  Google Scholar 

  25. R. L. Meng, L. Gao, P. Gautier-Picard, D. Ramirez, Y. Y. Sun, and C. W. Chu, Physica C 232, 337 (1994).

    Article  CAS  Google Scholar 

  26. K. Sawano, M. Morita, M. Tanaka, T. Sasaki, K. Kimura, S. Takebayashi, M. Kimura, and K. Miyamoto, Jpn. J. Appl. Phys. 30, L1157 (1991).

    Article  CAS  Google Scholar 

  27. G. J. Schmitz, J. Laakmann, Ch. Wolters, S. Rex, W. Gawalek, T. Habisreuther, G. Bruchlos, and P. Gonert, J. Mater. Res. 8, 2774 (1993).

    Article  CAS  Google Scholar 

  28. Wai Lo, D. A. Cardwell, S-L. Dung, and R. G. Barter, IEEE Trans. Appl. Supercond. 5, 1619 (1995).

    Article  Google Scholar 

  29. Wai Lo, D. A. Cardwell, S-L. Dung, and R. G. Barter, J. Mater. Res. 11, 39 (1996).

    Article  CAS  Google Scholar 

  30. Wai Lo, D. A. Cardwell, S-L. Dung, and R. G. Barter, J. Mater. Sci. 30, 3995 (1995).

    Article  CAS  Google Scholar 

  31. Y. Nakamura, K. Furuya, T. Izumi, and Y. Shiohara, J. Mater. Res. 9, 1350 (1994).

    Article  CAS  Google Scholar 

  32. Th. Wolf, W. Goldacker, and B. Obst, J. Cryst. Growth 96, 1010 (1989).

    Article  Google Scholar 

  33. B. N. Sun, R. Boutellier, and H. Schmid, Physica C 157, 189 (1989).

    Article  CAS  Google Scholar 

  34. R. Liang, P. Dosanjh, D. A. Barr, J. F. Carolan, and W.N. Hardy, Physica C 195, 51 (1992).

    Article  CAS  Google Scholar 

  35. I. Monot, M. P. Delamare, J. Wang, G. Desgardin, and B. Raveau, Physica C 235–240, 457 (1994).

    Article  Google Scholar 

  36. C. J. Kim, K. B. Kim, D. Y. Won, and G. W. Hong, Mater. Lett. 20, 283 (1994).

    Article  CAS  Google Scholar 

  37. Wai Lo, H-T. Leung, D. A. Cardwell, and J. C. L. Chow, J. Am. Ceram. Soc. 80, 813 (1996).

    Article  Google Scholar 

  38. H-T. Leung, W. Lo, J. C. L. Chow, D. A. Cardwell, and W.Y. Liang, unpublished.

  39. G. J. Schmitz, B. Nestler, H. J. Diepers, F. Pezzolla, R. Prieler, M. Seeßelberg, and I. Steinbath, in Proceedings of the Second European Conference on Applied Superconductivity, edited by D. Dew-Hughes, Institute of Physics Conference Series No. 148 (Institute of Physics, Bristol, United Kingdom), p. 167.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, W., Cardwell, D.A. & Chow, J.C.L. Anisotropic growth morphology and platelet formation in large grain Y–Ba–Cu–O grown by seeded peritectic solidification. Journal of Materials Research 13, 1141–1146 (1998). https://doi.org/10.1557/JMR.1998.0162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0162

Navigation