Skip to main content
Log in

Effect of the Ball-Milling Technique on the Transport Current Density of Polycrystalline Superconductor YBa 2 Cu 3 O y -Pinning Mechanism

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

We have studied the flux-pinning mechanisms of YBa 2Cu 3 O y (Y-123) and YBa 2Cu 3 O y embedded by Y-deficient Y-123 nanoparticles induced by planetary ball-milling technique. Samples were synthesized in air using a standard solid-state reaction technique by considering a thermal cycle with two stages of sintering at 950 °C separated by intermediate crushing; a traditional crushing (in a mortar) and another energetic (in a planetary crusher). Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM), and the global critical current density dependence on temperature (J ct(T)) at several applied magnetic fields were carried out. The temperature dependence of J ct(T) was analyzed within the collective pinning model. For both samples and at self-magnetic field, the temperature dependence of the critical current density is in agreement with the δ T c pinning mechanism which is due to the spatial fluctuation of the Ginsburg-Landau coefficient associated with the transition temperature T c. Under an applied magnetic field of 100 mT there is evidence of δ ε and δ l pinning mechanisms in the unmilled sample; however, the δ ε pinning is strongly dominant in the milled one These results agree with TEM observations showing the appearance of defects and contrast deformation due to the nanophases generated by ball milling and embedded inside the superconducting matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, J., Shi, Z.X., Lv, H., Tamegai, T.: Physica C 445–448, 462 (2006)

    Article  Google Scholar 

  2. Xu, M., Kitazawa, H., Takano, Y., Ye, J., Nishida, K., Abe, H., Matsushita, A., Kido, G.: Appl. Phys. Lett. 79, 2779 (2001)

    Article  ADS  Google Scholar 

  3. Kim, K.H.P., Choi, J.H., Jung, C.U., Chowdhury, P., Hyun-Sook Lee, Park, M.S., Kim, H.J., Kim, J.Y., Du, Z., Choi, E.M., Kim, M.S., Kang, W.N., Lee, S.I., Sung, G.Y., Lee, J.Y.: Phys. Rev. B 65, 100510(R) (2002)

    Article  ADS  Google Scholar 

  4. Pradhan, A.K., Shi, Z.X., Tokunaga, M., Tamegai, T., Takano, Y., Togano, K., Kito, H., Ihara, H.: Phys. Rev. B 64, 212509 (2001)

    Article  ADS  Google Scholar 

  5. Kim, H.-J., Kang, W.N., Choi, E.-Mi., Kim, M.-S., Kim, K. H. P., Lee, S.-I.: Phys. Rev. Lett. 87, 087002 (2001)

    Article  ADS  Google Scholar 

  6. Kim, M.-S., Jung, C.U., Park, M.-S., Lee, S.Y., Kim, K.H.P., Kang, W.N., Lee, S.-I.: Phys. Rev. B 64, 012511 (2001)

    Article  ADS  Google Scholar 

  7. Pallecchi, I., Tarantini, C., Aebersold, H.U., Braccini, V., Fanciulli, C., Ferdeghini, C., Gatti, F., Lehmann, E., Manfrinetti, P., Marré, D., Palenzona, A., Siri, A.S., Vignolo, M., Putti, M.: Phys. Rev. B 71, 212507 (2005)

    Article  ADS  Google Scholar 

  8. Wen, H.H., Zhao, Z.X., Xiao, Y.G., Yin, B., Li, J.W.: Physica C 251, 371 (1995)

    Article  ADS  Google Scholar 

  9. Blatter, G., Feigelman, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M.: Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  10. Wen, H.H., Zhao, Z.X., Wang, R.L., Li, H.C., Yin, B.: Physica C 262, 81 (1996)

    Article  ADS  Google Scholar 

  11. Ben Salem, M.K., Hamrita, A., Hannachi, E., Slimani, Y., Ben Salem, M., Ben Azzouz, F.: Physica C 498, 38–44 (2014)

    Article  ADS  Google Scholar 

  12. Jha, A.K., Khare, N., Pinto, R.: J. Supercond. Nov. Magn. 25, 377–380 (2012)

    Article  Google Scholar 

  13. Xiang, F.X., Wang, X.L., Xun, X., De Silva, K.S.B., Wang, Y.X., Dou, S.X.: Appl. Phys. Lett. 102, 152601 (2013)

    Article  ADS  Google Scholar 

  14. Ghorbani, S.R., Wang, X.L., Dou, S.X., Lee, S.-I., Hossain, M.S.A.: Phys. Rev. B 78, 184502 (2008)

    Article  ADS  Google Scholar 

  15. Zeng, R., Dou, S.X., Lu, L., Li, W.X., Kim, J.H., Munroe, P., Zheng, R.K., Ringer, S.P.: Vol. 94, p 042510 (2009)

  16. Griessen, R., Wen, Hai-hu, van Dalen, A.J.J., Dam, B., Rector, J., Schnack, H.G., Libbrecht, S., Osquiguil, E., Bruynseraede, Y.: Phys. Rev. Lett. 72, 1910 (1994)

    Article  ADS  Google Scholar 

  17. Pan, H.Y., Xu, X.L., Guo, J.D.: Mats. Lett. 57, 3869 (2003)

    Article  Google Scholar 

  18. Alikhanzadeh-Arania, S., Salavati-Niasari, M.: JNS 1, 62 (2012)

    Google Scholar 

  19. Hamrita, A., Slimani, Y., Ben Salem, M.K., Hannachi, E., Bessais, L., Ben Azzouz, F., Ben Salem, M.: Ceram. Int. 40, 1461 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ben Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hannachi, E., Hamrita, A., Slimani, Y. et al. Effect of the Ball-Milling Technique on the Transport Current Density of Polycrystalline Superconductor YBa 2 Cu 3 O y -Pinning Mechanism. J Supercond Nov Magn 28, 493–498 (2015). https://doi.org/10.1007/s10948-014-2746-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2746-2

Keywords

Navigation