Skip to main content
Log in

On the design of 1–3 piezocomposites using topology optimization

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We use a topology optimization method to design 1–3 piezocomposites with optimal performance characteristics for hydrophone applications. The performance characteristics we focus on are the hydrostatic charge coefficient \(d_h^{\left( * \right)}\), the hydrophone figure of merit \(d_h^{\left( * \right)}g_h^{\left( * \right)}\), and the electromechanical coupling factor \(k_h^{\left( * \right)}\). The piezocomposite consists of piezoelectric rods embedded in an optimal polymer matrix. We use the topology optimization method to design the optimal (porous) matrix microstructure. When we design for maximum \(d_h^{\left( * \right)}\) and \(d_h^{\left( * \right)}g_h^{\left( * \right)}\), the optimal transversally isotopic matrix material has negative Poisson’s ratio in certain directions. When we design for maximum \(k_h^{\left( * \right)}\), the optimal matrix microstructure is layered and simple to build.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Newnham and G. R. Ruchau, J. Am. Ceram. Soc. 74, 463 (1991).

    Article  CAS  Google Scholar 

  2. W. A. Smith, in Proceedings of IEEE Ultrasonics symposium (IEEE, 1991).

  3. R. E. Newnham, Ferroelectrics 68, 1 (1986).

    Article  CAS  Google Scholar 

  4. K. A. Klicker, J. V. Biggers, and R. E. Newnham, J. Am. Ceram. Soc. 64, 5 (1991).

    Article  Google Scholar 

  5. R. Y. Ting, A. A. Shaulov, and W. A. Smith, Ferroelectrics 132, 69 (1992).

    Article  CAS  Google Scholar 

  6. H. L. W. Chan and J. Unsworth, IEEE, Trans. Ultrasonic Ferro-electrics in Frequency Control 36, 434 (1989).

    Article  CAS  Google Scholar 

  7. M. Avellaneda and P. J. Swart, unpublished.

  8. L. V. Gibiansky and S. Torquato, J. Mech. Phys. Solids (in press, 1997).

  9. G. W. Milton and A. V. Cherkaev, J. Eng. Mater. Technol., Trans. ASME 117, 483 (1995).

    Article  Google Scholar 

  10. S. B. Vigdergauz, Mech. Solids 24, 57 (1989).

    Google Scholar 

  11. Y. Grabovsky and R. V. Kohn, J. Mech. Phys. Solids 43, 949 (1995).

    Article  Google Scholar 

  12. O. Sigmund, Ph. D. Thesis, Department of Solid Mechanics, Technical University of Denmark, 1994).

  13. O. Sigmund, Int. J. Solids Struct. 31, 2313 (1994).

    Article  Google Scholar 

  14. O. Sigmund, Mech. Mater. 20, 351 (1995).

    Article  Google Scholar 

  15. M. P. Bendsøe and N. Kikuchi, Comput. Methods in Appl. Mech. Eng. 71, 197 (1988).

    Article  Google Scholar 

  16. A. Cherkaev and R. Palais, unpublished.

  17. G. Allaire, E. Bonnetier, G. Francfort, and F. Jouve, unpublished.

  18. R. Lipton and A. R. Díaz, in First World Congress on Structural and Multidisciplinary Optimization, edited by G. I. N. Rozvany and Olhoff (N. Pergamon, Goslar, Germany, 1995), pp. 161–168.

    Google Scholar 

  19. J. F. Bourgat, Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1997), pp. 330–356.

    Google Scholar 

  20. J. M. Guedes and N. Kikuchi, Computer Methods Appl. Mech. Eng. 83, 143 (1991).

    Article  Google Scholar 

  21. P. Pedersen, in AGARD Conference Proceedings No. 36, Symposium on Structural Optimization (1970), pp. 189–192.

  22. K. Schittkowski, Struct. Optimization 7, 1 (1994).

    Article  Google Scholar 

  23. O. Sigmund and S. Torquato, J. Mech. Phys. Solids 45, 1037 (1997).

    Article  CAS  Google Scholar 

  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran (Cambridge University Press, England, 1992).

    Google Scholar 

  25. S. R. Hollister and B. A. Riemer, in SPIE, volume 2035, Mathematical Methods in Medical Imaging II (1993), pp. 95–106.

  26. R. J. Hanson and K. L. Hiebert, Technical Report No. SAND81-0297, Sandia National Laboratories (unpublished).

  27. C. S. Jog and R. B. Haber, Computer Methods Appl. Mech. Eng. 130, 203 (1996).

    Article  Google Scholar 

  28. A. R. Díaz and O. Sigmund, Struct. Optimization 10, 40 (1995).

    Article  Google Scholar 

  29. O. Sigmund, Mech. Struct. Machines 25, 495 (1997).

    Google Scholar 

  30. R. F. Almgren, J. Elast. 12, 839 (1985).

    Google Scholar 

  31. A. G. Kolpakov, PMM J. Appl. Math. Mech., U. S. S. R. 49, 739 (1985).

    Article  Google Scholar 

  32. O. Sigmund, in Proceedings of the Third International Conference on Intelligent Material, ICIM96, Lyon, June, edited by P. Gobin (SPIE vol. 2779, 1996).

    Google Scholar 

  33. P. Jacobs, Rapid Prototyping and Manufacturing–Fundamentals of Stereolithography (SME, Dearborn, MI, 1992).

    Google Scholar 

  34. M. L. Griffith and J. W. Halloran, J. Am. Ceram. Soc. 79, 2601 (1996).

    Article  CAS  Google Scholar 

  35. R. Garg, R. K. Prud’homme, I. A. Aksay, F. Liu, and R. Alfano, J. Opt. Soc. Am. (in press).

  36. R. Garg et al., unpublished.

  37. U. D. Larsen, O. Sigmund, and S. Bouwstra, J. Microelectro-mechanical Systems, 6, 99 (1997).

    Article  Google Scholar 

  38. O. Sigmund and S. Torquato, Appl. Phys. Lett. 69, 3203 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigmund, O., Torquato, S. & Aksay, I.A. On the design of 1–3 piezocomposites using topology optimization. Journal of Materials Research 13, 1038–1048 (1998). https://doi.org/10.1557/JMR.1998.0145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0145

Navigation