Skip to main content
Log in

Numerical comparison of nonlinear programming algorithms for structural optimization

  • Review Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

For FE-based structural optimization systems, a large variety of different numerical algorithms is available, e.g. sequential linear programming, sequential quadratic programming, convex approximation, generalized reduced gradient, multiplier, penalty or optimality criteria methods, and combinations of these approaches. The purpose of the paper is to present the numerical results of a comparative study of eleven mathematical programming codes which represent typical realizations of the mathematical methods mentioned. They are implemented in the structural optimization system MBB-LAGRANGE, which proceeds from a typical finite element analysis. The comparative results are obtained from a collection of 79 test problems. The majority of them are academic test cases, the others possess some practicalreal life background. Optimization is performed with respect to sizing of trusses and beams, wall thicknesses, etc., subject to stress, displacement, and many other constraints. Numerical comparison is based on reliability and efficiency measured by calculation time and number of analyses needed to reach a certain accuracy level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadie, J. 1978: The GRG method for nonlinear programming. In: Greenberg, H. (ed.)Design and implementation of optimization software. Alphen an den Rijn: Sijthoff and Noordhoff

    Google Scholar 

  • Arora, J.S.; Belegundu, A.D. 1985: A study of mathematical programming methods for structural optimization. Part II: Numerical results.Int. J. Num. Meth. Engng. 21, 1601–1623

    Google Scholar 

  • Asaadi, J. 1973: A computational comparison of some nonlinear programs.Nonlinear Programming 4, 144–154

    Google Scholar 

  • Berke, L.; Khot, N.S. 1974: Use of optimality criteria methods for large scale systems.AGARD Lecture Series No. 70 on Structural Optimization

  • Bertsekas, D.P. 1976: Multiplier methods: a survey.Automatica 12, 133–145

    Google Scholar 

  • Bremicker, M. 1986: Entwicklung eines Optimierungsalgorithmus der generalisierten reduzierten Gradienten.Report, Forschungslaboratorium für angewandte Strukturoptimierung, Universität-GH Siegen

  • Broyden, C.G.; Attia, N.F. 1988: Penalty functions, Newton's method, and quadratic programming.J. Optimiz. Theory Appl. 58, 377–385

    Google Scholar 

  • Colville, A.R. 1968: A comparative study on nonlinear programming codes.IBM N.Y. Scientific Center Report 320-2949

  • Eason, E.D.; Fenton, R.G. 1972: Testing and evaluation of numerical methods for design optimization.Technical Publication Series UTME-TP 7204, Department of Mechanical Engineering, University of Toronto

  • Eason, E.D.; Fenton, R.G. 1974: A comparison of numerical optimization methods for engineering design.Trans. ASME 96, Series B, 196–200

    Google Scholar 

  • Fiacco, A.V.; McCormick, G.P. 1968:Nonlinear sequential unconstrained minimization techniques. New York: John Wiley & Sons

    Google Scholar 

  • Fletcher, R. 1975: An ideal penalty function for constrained optimization. In: Mangasarian, O.L.; Meyer, R.R.; Robinson, S.M. (eds.)Nonlinear programming 2. New York: Academic Press

    Google Scholar 

  • Fletcher, R.; De La Maza, E.S. 1987: Nonlinear programming and nonsmooth optimization by successive linear programming.Report No. Na/100, Department of Mathematical Sciences, University of Dundee

  • Fleury, C. 1979: Structural weight optimization by dual methods of convex programming.Int. J. Num. Meth. Engng. 14, 1761–1783

    Google Scholar 

  • Fleury, C. 1986: Shape optimal design by the convex linearization method. In: Bennett, J.; Botkin, M. (eds.)The optimum shape: automated structural design, pp. 297–326. New York: Plenum Press

    Google Scholar 

  • Fleury, C. 1989: CONLIN: an efficient dual optimizer based on convex approximation concepts.Struct. Optim. 1, 81–89

    Google Scholar 

  • Fleury, C.; Ramanathan, R.K.; Salema, M.; Schmitt, L.A. 1984: Access computer program for the synthesis of large structural systems.NASA Langley Research Center Optimization Conf.

  • Gill, P.E.; Murray, W.; Wright, M.H. 1981:Practical optimization. New York: Academic Press

    Google Scholar 

  • Han, S.-P. 1976: Superlinearly convergent variable metric algorithms for general nonlinear programming problems.Mathematical Programming 11, 263–282

    Google Scholar 

  • Han, S.-P. 1977: A globally convergent method for nonlinear programming.J. Optimiz. Theory Appl. 22, 297–309

    Google Scholar 

  • Hestenes, M.R. 1969: Multiplier and gradient methods.J. Optimiz. Theory Appl. 4, 303–320

    Google Scholar 

  • Hock, W.; Schittkowski, K. 1981: Test examples for nonlinear programming codes.Lecture Notes in Economics and Mathematical Systems 187. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Hörnlein, H.R.E.M. 1986: Sensitivitätsanalyse für verformungsabhängige Nebenbedingungen bei der Dimensionierung von FE-Strukturen.Technical Note TN/S-0129-86, MBB, Ottobrunn

  • Hörnlein, H.; Schittkowski, K. (eds.) 1993:Software systems for structural optimization. Basel: Birkhäuser

    Google Scholar 

  • Kneppe, G.; Krammer, H.; Winkler, F. 1987: Structural optimization of large scale problems using MBB-LAGRANGE.Proc. 5th World Cong. and Exhibition on FEM (held in Salzburg, Austria)

  • Kneppe, G. 1985: Direkte Lösungsstrategien zur Gestaltsoptimierung von Flächentragwerken.Reihe 1, No. 135, Düsseldorf: VDI-Verlag

    Google Scholar 

  • Lasdon, L.S.; Kim, N.-H.; Zhang, J. 1983: An improved successive linear programming algorithm.Working Paper 8384-3-1, Department of General Business, The University of Texas at Austin

  • Lasdon, L.S.; Ratner, M.W.; Waren, A.D. 1978: GRG2 user's guide.Report, School of Business Administration, The University of Texas at Austin

  • Lasdon, L.S.; Waren, A.D. 1978: Generalized reduced gradient software for linearly and nonlinearly constrained problems. In: Greenberg, H. (ed.)Design and implementation of optimization software. Alphen an den Rijn: Sijthoff and Noordhoff

    Google Scholar 

  • Lootsma, F.A. 1971: A survey of methods for solving constrained minimization problems via unconstrained minimization. In: Lootsma, F.A. (ed.)Numerical methods for nonlinear optimization. New York: Academic Press

    Google Scholar 

  • Lootsma, F.A. 1981: Fuzzy performance evaluation of nonlinear optimization methods, with sensitivity analysis and final scores.J. Information and Optimization Sciences 10, 15–44

    Google Scholar 

  • MacNeal-Schwendler Co. 1993: MSC-NASTRAN Handbook for Linear Analysis.

  • Murray, W. 1967: Ill-conditioning in barrier and penalty functions arising in constrained nonlinear programming.Proc. Sixth Int. Symp. on Mathematical Programming (held at Princeton University, N.J.)

  • Parkinson, A.; Wilson, M. 1986: Development of a hybrid SQPGRG-algorithm for constrained nonlinear programming.Proc. Design Engineering Technical Conf. (held in Ohio)

  • Papalambros, P.Y.; Wilde, D.J. 1988:Principles of optimal design. Cambridge: Cambridge University Press

    Google Scholar 

  • Pierre, D.A.; Lowe, M.J. 1975:Mathematical programming via augmented Lagrangian. An introduction with computer programs. Addison-Wesley

  • Powell, M.J.D. 1969: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.)Optimization. New York: Academic Press

    Google Scholar 

  • Powell, M.J.D. 1978a: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G.A. (ed.)Numerical analysis. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Powell, M.J.D. 1978b: The convergence of variable metric methods for nonlinearly constrained optimization calculations. In: Mangasarian, O.L.; Meyer, R.R.; Robinson, S.M. (eds.)Nonlinear programming. New York: Academic Press

    Google Scholar 

  • Powell, M.J.D. 1983: On the quadratic programming algorithm of Goldfarb and Idnani.Report DAMTP 19, University of Cambridge

  • Powell, M.J.D. 1992: Log barrier methods for semi-infinite programming calculations.Report DAMTP 11, University of Cambridge

  • Rockafellar, R.T. 1974: Augmented Lagrange multiplier functions and duality in non-convex programming.SIAM J. Control 12, 268–285

    Google Scholar 

  • Saaty, T.L. 1980:The analytic hierarchy process, planning, priority setting, resource allocation. New York: McGraw-Hill

    Google Scholar 

  • Sandgren, E. 1977:The utility of nonlinear programming algorithms. Ph.D. Thesis, Purdue University, West Lafayette, Indiana

    Google Scholar 

  • Sandgren, E.; Ragsdell, K.M. 1982: On some experiments which delimit the utility of nonlinear programming methods for engineering design.Mathematical Programming Study 16, 118–136

    Google Scholar 

  • Schittkowski, K. 1980: Nonlinear programming codes.Lecture Notes in Economics and Mathematical Systems 183. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Schittkowski, K. 1983: On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function.Optimization, Mathematische Operationsforschung und Statistik 14, 197–216

    Google Scholar 

  • Schittkowski, K. 1985a: On the global convergence of nonlinear programming algorithms.J. Mech. Trans. Auto. Des. 107, 454–458

    Google Scholar 

  • Schittkowski, K. 1985b: A unified outline of nonlinear programming algorithms.J. Mech. Trans. Auto. Des. 107, 449–453

    Google Scholar 

  • Schittkowski, K. 1985/86: NLPQL: a FORTRAN subroutine solving constrained nonlinear programming problems.Annals of Operations Research 5, 485–500

    Google Scholar 

  • Schittkowski, K. 1986: On the convergence of a generalized reduced gradient algorithm for nonlinear programming.Optimization 17, 731–755

    Google Scholar 

  • Schittkowski, K. 1987: More test examples for nonlinear programming codes.Lecture Notes in Economics and Mathematical Systems 282. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Schittkowski, K. 1992: Solving nonlinear programming problems with very many constraints.Optimization 25, 179–196

    Google Scholar 

  • Schuldt, S.B. 1975: A method of multipliers for mathematical programming problems with equality and inequality constraints.J. Optimiz. Theory Appl. 17

  • Schwarz, H.R. 1981:FORTRAN-Programme zur Methode der Finiten Elemente. Stuttgart: Teubner

    Google Scholar 

  • Sömer, M. 1987: Aufstellen und Testen eines hybriden SQP-GRG Optimierungsalgorithmus. Studienarbeit, Institut für Mechanik und Regelungstechnik, Universität-GH-Siegen

  • Spellucci, P. 1993:Numerische Verfahren der nichtlinearen Optimierung. Basel: ISNM Birkhäuser

    Google Scholar 

  • Stoer, J. 1985: Principles of sequential quadratic programming methods for solving nonlinear programs. In: Schittkowski, K. (ed.)Computational mathematical programming, pp. 165–208

  • Svanberg, K. 1987: Method of moving asymptotes — a new method for structural optimization.Int. J. Num. Meth. Engng. 24, 359–373

    Google Scholar 

  • Wolfe, P. 1967: Methods for linear constraints. In: Abadie, J. (ed.)Nonlinear programming. Amsterdam: North-Holland

    Google Scholar 

  • Zillober, C. 1993a: A globally convergent version of the method of moving asymptotes.Struct. Optim. 6, 166–174

    Google Scholar 

  • Zillober, C. 1993b: SCP — an implementation of two algorithmsfor solving nonlinear programming problems.Report of the DFG (German Science Foundation), Universität Bayreuth

  • Zotemantel, R. 1993: MBB-LAGRANGE: a computer aided structural design system. In: Hörnlein, H.; Schittkowski, K. (eds.)Software systems for structural optimization. Basel: Birkhäuser

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research project was sponsored by the Deutsche Forschungsgemeinschaft under research contract DFG-Schi 173/6-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schittkowski, K., Zillober, C. & Zotemantel, R. Numerical comparison of nonlinear programming algorithms for structural optimization. Structural Optimization 7, 1–19 (1994). https://doi.org/10.1007/BF01742498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01742498

Keywords

Navigation