Skip to main content
Log in

Processing and characterization of compositionally modified PbTiO3 thin films prepared by pulsed laser deposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Modified lead titanate of 0.9PbTiO3 −0.1Pb(Mg0.5 W0.5)O3 thin films have been deposited onto Pt-coated Si substrates by pulsed laser deposition. Films were crystallized in situ during deposition or by post-depositional heat treatment (post-annealing). Compositional and structural characterization showed that the phase formation and microstructure of the films were highly sensitive to deposition conditions. Perovskite single phase films were formed in situ at 650 °C, PO2 = 40 Pa as well as by post-annealing amorphous films at 650 °C. In the post-annealing process, the amorphous as-deposited phase was crystallized to perovskite and/or pyrochlore, and the ratio of perovskite to pyrochlore was found to be influenced by the depositional PO2. Depending on the deposition temperature, the grain structures of the crystallized films were columnar or equiaxed. A relatively homogeneous surface morphology was obtained by deposition at a lower pressure (PO2 = 13 Pa). The in situ crystallized films showed variable crystallographic orientation. The more (111) oriented films had the lowest remanent polarizations and the highest coercive fields. A method for preparing randomly oriented films, via a two-step deposition process with intermediate annealing, is believed to give the most consistent results and the best ferroelectric properties at the present level of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Paz de Araujo, L. D. McMillan, B. M. Melnick, J. D. Cuchiaro, and J. F. Scott, Ferroelectrics 104, 241–256 (1990).

    Article  Google Scholar 

  2. M. Okuyama and Y. Hamakawa, Ferroelectrics 63, 243–252 (1985).

    Article  CAS  Google Scholar 

  3. W. A. Geideman, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 38, 704–711 (1991).

    Article  CAS  Google Scholar 

  4. K. S. Grabowski, J. S. Horwitz, and D. B. Chrisey, Ferroelectrics 116, 19–33 (1991).

    Article  CAS  Google Scholar 

  5. S. K. Dey and R. Zuleeg, Ferroelectrics 108, 37–46 (1990).

    Article  CAS  Google Scholar 

  6. K. L. Saenger, R. A. Roy, K. F. Etzold, and J. J. Cuomo, in Ferroelectric Thin Films, edited by E. R. Myers and A. I. Kingon (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 115–120.

  7. G. A. Petersen, Jr. and J. R. McNeil, Thin Solid Films 220, 87–91 (1992).

    Article  CAS  Google Scholar 

  8. S. Otsubo, T. Maeda, T. Minamikawa, Y. Yonezawa, A. Mori-moto, and T. Shimizu, Jpn. Appl. Phys. 29 (1), L133–L136 (1990).

  9. R. W. Schwartz, B. A. Tuttle, D. H. Doughty, C. E. Land, D. C. Goodnow, C. L. Hernandez, T. J. Zender, and S. L. Martinez, IEEE Trans. Ultras. Ferroelec. Freq. Contr. 38 6, 677–682 (1991).

    Article  CAS  Google Scholar 

  10. N. N. Krainik and A. I. Agranovskaya, Sov. Phys.-Solid State 2, 63–65 (1960).

    Google Scholar 

  11. K. Uchino, M. Aizawa, and S. Nomura, Ferroelectrics 64, 199–208 (1985).

    Article  CAS  Google Scholar 

  12. B. W. Lee, H. M. Lee, L. P. Cook, P. K. Schenck, A. Paul, W. Wong-Ng, C. K. Chiang, P. S. Brody, B. J. Rod, and K. W. Bennett, in Laser Ablation in Materials Processing, edited by B. Braren, J. J. Dubowski, and D. Norton (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1992), pp. 403–407.

  13. K. Iijima, Y. Tomita, R. Takayama, and I. Ueda, J. Appl. Phys. 60 1, 361–367 (1986).

    Article  CAS  Google Scholar 

  14. M. Ishida, H. Matsunami, and T. Tanaka, J. Appl. Phys. 48 3, 951–953 (1977).

    Article  CAS  Google Scholar 

  15. A. H. Carim, B. A. Tuttle, D. H. Doughty, and S. L. Martinez, J. Am. Ceram. Soc. 74 6, 1455–1458 (1991).

    Article  CAS  Google Scholar 

  16. C. V. R. Vasant Kumar, R. Pascual, and M. Sayer, J. Appl. Phys. 71 2, 864–874 (1992).

    Article  Google Scholar 

  17. L. P. Cook, M. D. Vaudin, P. K. Schenck, W. Wong-Ng, C. K. Chiang, and P. S. Brody, in Evolution of Thin-Film and Surface Microstructure, edited by C. V. Thompson, J. Y. Tsao, and D. J. Srolovitz (Mater. Res. Soc. Symp. Proc. 202, Pittsburgh, PA, 1991), pp. 241–246.

  18. E. Kinsbron, M. Sternheim, and R. Knoell, Appl. Phys. Lett. 42 9, 835–837 (1983).

    Article  CAS  Google Scholar 

  19. A. I. Zaslavskii and M. F. Bryzhina, Sov. Phys.-Crystallography 7 5, 577–583 (1963).

    Google Scholar 

  20. G. Arlt, D. Hennings, and G. de With, J. Appl. Phys. 58 4, 1619–1625 (1985).

    Article  CAS  Google Scholar 

  21. B. G. Demczyk, R. S. Rai, and G. Thomas, J. Am. Ceram. Soc. 73 3, 615–620 (1990).

    Article  CAS  Google Scholar 

  22. B. G. Demczyk, A. G. Khachaturyan, and G. Thomas, Scripta Metall. 21 7, 967–969 (1989).

    Article  Google Scholar 

  23. O. Eryu, K. Murakami, K. Masuda, A. Kasuya, and Y. Nishina, Appl. Phys. Lett. 54 26, 2716–2718 (1989).

    Article  CAS  Google Scholar 

  24. T. Ogawa, A. Senda, and T. Kasanami, Jpn. J. Appl. Phys. 30 (9B), 2145–2148 (1991).

  25. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971), pp. 77–80.

  26. J. M. Herbert, Ferroelectric Ceramics (Gordon and Breach Sci. Pub., New York, 1985), pp. 137–145.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, B.W., Cook, L.P., Schenck, P.K. et al. Processing and characterization of compositionally modified PbTiO3 thin films prepared by pulsed laser deposition. Journal of Materials Research 12, 509–517 (1997). https://doi.org/10.1557/JMR.1997.0073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0073

Navigation