Skip to main content
Log in

Measurement of solid state diffusion coefficients by a temperature-programmed method

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper presents a method for determining diffusivities in solids where the diffusing species desorbs or reacts at the external surfaces, and where the diffusivity does not vary appreciably with concentration. The method involves measuring the flux of the diffusive species out of the solid under the influence of a temperature program. A general model is developed, based on nonisothermal Fickian diffusion, which is applicable to solid particles with slab or spherical geometry. The solution is presented both as an analytical expression and as correlation charts of experimentally observable quantities. These charts are contour diagrams of the temperatures of peak diffusion rate with ln(E/R) and ln(D 0/h 2) as the axes, where E and D 0 are the activation energy and pre-exponential terms of the diffusivity expression D = D 0 exp(−E/RT), where R is the gas constant, and h the size of the particles. This paper deals exclusively with the case of oxygen diffusion in the vanadium oxide system. In this case, vanadium oxide was reduced in a reactive ammonia stream at conditions in which the surface reaction was fast compared to the diffusive transport process. Using this method the diffusion parameters were found to be D 0 = 1.9 × 10−5 cm2 s−1 and E = 101 kJ/mol. The method was checked by varying the crystallite size of the vanadium oxide sample in the range 2h = 0.14−0.29 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Rothman, Diffusion in Materials, edited by A. L. Laskar et al. (Kluwer Academic, Dordrecht, 1990), p. 269.

  2. M. M. Dubinin, Carbon 13, 193 (1975).

    Article  CAS  Google Scholar 

  3. W. Heink, J. Kärger, and H. Pfeifer, Chem. Eng. Sci. 33, 1019 (1978).

    Article  CAS  Google Scholar 

  4. Proc. International Zeolite Conf., edited by N. G. vanden Begin et al. (Elsevier, Amsterdam, 1989), p. 915.

  5. J. Kärger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids (John Wiley, New York, 1992).

    Google Scholar 

  6. H. W. Haynes, Catal. Rev. Sci. Eng. 30, 563 (1988).

    Article  CAS  Google Scholar 

  7. R. J. Cvetanovic and Y. Amenomiya, Adv. Catal. 17, 103 (1967).

    CAS  Google Scholar 

  8. Y-C. Chan and R. B. Anderson, J. Catal. 50, 319 (1977).

    Article  CAS  Google Scholar 

  9. D. Fraenkel, J. Chem. Soc., Faraday Trans. I 77, 2029 (1981).

    Article  CAS  Google Scholar 

  10. D. Fraenkel and A. Levy, J. Chem. Soc., Faraday Trans. I 84, 1817 (1988).

    Article  CAS  Google Scholar 

  11. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications (John Wiley, New York, 1980).

    Google Scholar 

  12. A. L. Dragoo, J. Res. Natl. Bureau of Standards A., Phys. Chem. 72A, 157 (1968).

    CAS  Google Scholar 

  13. R. Kapoor and S. T. Oyama, J. Solid State Chem. 99, 303 (1992).

    Article  CAS  Google Scholar 

  14. S. T. Oyama, J. Catal. 133, 358 (1992).

    Article  CAS  Google Scholar 

  15. S. T. Oyama, J. C. Schlatter, J. E. Metcalfe III, and J. M. Lambert, Jr., Ind. Eng. Chem. Res. 27, 1639 (1988).

    Article  CAS  Google Scholar 

  16. R. Kapoor and S. T. Oyama, J. Mater. Res. 12, 474–479 (1997).

    Article  CAS  Google Scholar 

  17. P. A. Redhead, Vacuum 12, 203 (1962).

    Article  CAS  Google Scholar 

  18. N. W. Hurst, S. J. Gentry, A. Jones, and B. D. McNicol, Catal. Rev. Sci. Eng. 24, 233 (1982); S. Bhatia, J. Beltramini, and D. D. Do, Catal. Today 7, 309 (1990).

    Google Scholar 

  19. M. S. Seltzer, Oxide and Oxide Films, edited by J. W. Diggle and A. K. Vijh (Marcel Dekker, New York, 1972), Vol. 4, p. 1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, R., Oyama, S.T. Measurement of solid state diffusion coefficients by a temperature-programmed method. Journal of Materials Research 12, 467–473 (1997). https://doi.org/10.1557/JMR.1997.0068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0068

Navigation