Skip to main content
Log in

Chemical stability of CuInS2 in oxygen at 298 K

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A thermochemical analysis is performed in the quaternary system Cu–In–S–O at 298 K, including the respective four ternaries. The Cu–In phase diagram is updated with respect to the new experimental as well as to the new thermochemical results in the literature. Free energies of In6S7, In2.8S4, CuIn2, and Cu2In2O5 have been estimated. Consistent sets of data are used for the calculations of the ternary systems with the program thermo, and the results are used to calculate the quaternary tetrahedron Cu–In–S–O with the program thermoq; the algorithm is given. Twelve quaternary two-phase equilibria have been found. They are used to calculate predominance area diagrams of the quaternary system with the program stadiaq for different oxygen partial pressures. The algorithm of this program is given. From these diagrams it becomes obvious that CuInS2 is unstable in air and even in UHV systems and should react to form In2(SO4)3 and Cu2S at oxygen pressures larger than log p (pascal) = −51.5. The results are useful for research in fields such as oxidation and crystal growth of CuInS2 and for development of processes for producing this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Goslowsky, S. Fiechter, R. Könenkamp, and H. J. Lewerenz, Solar Energy Mater. 13, 221 (1986).

    Article  CAS  Google Scholar 

  2. L. L. Kazmerski and G. A. Sanborn, J. Appl. Phys. 48, 3178 (1977).

    Article  CAS  Google Scholar 

  3. Y. L. Wu, H. Y. Lin, C. Y. Sun, M. H. Yang, and H. L. Hwang, Thin Solid Films 168, 113 (1989).

    Article  CAS  Google Scholar 

  4. H. Takenoshita and T. Nakau, Jpn. J. Appl. Phys. 21 (1), 18 (1982).

    Article  CAS  Google Scholar 

  5. H. J. Hsu, M. H. Yang, R. S. Tang, T. M. Hsu, and H. L. Hwang, J. Cryst. Growth 70, 427 (1984).

    Article  CAS  Google Scholar 

  6. G. J. Fleming, M. L. Fearheiley, and H. J. Lewerenz, J. Electrochem. Soc. 136 (5), 1506 (1989).

    Article  CAS  Google Scholar 

  7. R. Scheer, T. Walther, H. W. Schock, M. L. Fearheiley, and H. J. Lewerenz, Appl. Phys. Lett. 63 (24), 3294 (1993).

    Article  CAS  Google Scholar 

  8. H. Metzner, M. Brüßler, K. D. Husemann, and H. J. Lewerenz, Phys. Rev. B 44, 11614 (1991).

    Article  CAS  Google Scholar 

  9. M. L. Fearheiley, N. Dietz, M. Birkholz, and C. Höpfner, J. Electron. Mater. 20, 175 (1991).

    Article  CAS  Google Scholar 

  10. M. L. Fearheiley, N. Dietz, R. Scheer, and H. J. Lewerenz, Proc. XIIIth State-of-the-Art Program on Compound Semiconductors, Seattle, WA, October 14–18, 1990.

  11. J. J. M. Binsma, L. J. Giling, and J. Bloem, J. Cryst. Growth 50, 429 (1980).

    Article  CAS  Google Scholar 

  12. H. Migge, J. Mater. Res. 6, 2381 (1991).

    Article  CAS  Google Scholar 

  13. H. Migge and J. Grzanna, J. Mater. Res. 9, 125 (1994).

    Article  CAS  Google Scholar 

  14. A. Bolcavage, S. W. Chen, C. R. Kao, Y. A. Chang, and A. D. Romig, Jr., J. Phase Equilibria 14, 14 (1993).

    Article  CAS  Google Scholar 

  15. C. R. Kao, A. Bolcavage, S. L. Chen, S. W. Chen, Y. A. Chang, and A. D. Romig, Jr., J. Phase Equilibria 14, 22 (1993).

    Article  CAS  Google Scholar 

  16. P. R. Subramanian and D. E. Laughlin, Bull. Alloy Phase Diagrams 10, 554 (1989).

    Article  CAS  Google Scholar 

  17. Y. A. Chang, private communication (August 1993).

  18. K. C. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides (Butterworths, London, 1974).

    Google Scholar 

  19. D. J. Chakrabarti and D. E. Laughlin, Bull. Alloy Phase Diagrams 4, 254 (1983).

    Article  Google Scholar 

  20. J. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Springer-Verlag, Berlin, 1973, Suppl. 1977).

  21. Y. A. Chang and K-Ch. Hsieh, Phase Diagrams of Ternary Copper-Oxygen-Metal Systems, Monograph Series on Alloy Phase Diagrams (ASM, Metals Park, OH, 1989), p. 61, system Cu–O–In.

  22. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed. (Pergamon Press, Oxford, New York, 1979).

  23. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, The NBS Tables of Chemical Thermodynamic Properties, in J. Phys. Chem. Ref. Data 11, Suppl. (1982).

  24. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelly, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, OH, 1973).

    Google Scholar 

  25. JANAF Thermochemical Tables, 3rd ed., in J. Phys. Chem. Ref. Data 14, Suppl. (1985).

  26. D. Schmidt, Präparation und Charakterisierung von CuInS2 – Oberflächen mit UPS und XPS, Diplomarbeit Technische Universität Berlin, Fachbereich Physik 04, Juni 1994 (in German).

  27. H-J. Lewerenz, private communication (1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzanna, J., Migge, H. Chemical stability of CuInS2 in oxygen at 298 K. Journal of Materials Research 12, 355–363 (1997). https://doi.org/10.1557/JMR.1997.0051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0051

Navigation