Skip to main content
Log in

Thermodynamic properties of CuSO4(aq) from 268 K to 377 K and phase equilibria in the CuSO4–H2O system

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This paper reports a comprehensive thermodynamic treatment of the binary system CuSO4–H2O including solution properties and various phase equilibria. Published thermodynamic data of CuSO4(aq), solubilities of the hydrates of copper sulfate, and equilibrium data of the hydration-dehydration reactions have been collected and critically assessed. Using an internally consistent database of solution properties in the temperature range (268–377) K, the parameters of an interaction (Pitzer) model were determined. With this model activity coefficients and water activities of saturated CuSO4 solutions have been calculated yielding, together with equilibrium data of hydration–dehydration reactions, the thermodynamic solubility products of CuSO4·5H2O, CuSO4·3H2O, and CuSO4·H2O. The complete phase diagram of the system CuSO4–H2O has been established.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akilan C, May PM, Hefter G (2014) J Solut Chem 43:885

    Article  CAS  Google Scholar 

  2. Richardson HW (1994) Copper compounds. In: Kroschwitz J (ed) Kirk-Othmer encyclopaedia of chemical technology, 5th edn. Wiley, Hoboken

    Google Scholar 

  3. Davenport WG, Biswas AK (2002) Extractive metallurgy of copper. Pergamon, Oxford

    Google Scholar 

  4. Jambor JL, Nordstrom DK, Alpers CN (2000) Rev Mineral Geochem 40:303

    Article  CAS  Google Scholar 

  5. Hammarstrom JM, Seal RR, Meier AL, Kornfeld JM (2005) Chem Geol 215:407

    Article  CAS  Google Scholar 

  6. Donkers PAJ, Sögütoglu LC, Huinink HP, Fischer HR, Adan OCG (2017) Appl Energy 199:45

    Article  CAS  Google Scholar 

  7. Ferchaud C (2016) Experimental study of salt hydrates for thermochemical seasonal heat storage. Dissertation, Technical University Eindhoven, Eindhoven

  8. Chou I-M, Seal RR, Hemingway BS (2002) Am Mineral 87:108

    Article  CAS  Google Scholar 

  9. Grevel K-D, Majzlan J (2011) Chem Geol 286:301

    CAS  Google Scholar 

  10. Pitzer KS (1991) Ion interaction approach: theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions. CRC Press, Boca Raton, p 75

    Google Scholar 

  11. Steiger M, Linnow K, Ehrhardt D, Rohde M (2011) Geochim Cosmochim Acta 75:3600

    Article  CAS  Google Scholar 

  12. Pitzer KS, Mayorga G (1974) J Solut. Chem 3:539

    Article  CAS  Google Scholar 

  13. Archer DG, Wang P (1990) J Phys Chem Ref Data 19:371

    Article  CAS  Google Scholar 

  14. Robinson RA, Jones RS (1936) J Am Chem Soc 58:959

    Article  CAS  Google Scholar 

  15. Downes CJ, Pitzer KS (1976) J Solut. Chem 5:389

    Article  CAS  Google Scholar 

  16. Miller DG, Rard JA, Eppstein LB, Robinson RA (1980) J Solut. Chem 9:467

    CAS  Google Scholar 

  17. Libuś W, Sadowska T, Libuś Z (1980) J Solut. Chem 9:341

    Article  Google Scholar 

  18. Yang H, Zeng D, Voigt W, Hefter G, Liu S, Chen Q (2014) J Chem Eng Data 59:97

    Article  CAS  Google Scholar 

  19. Yang H, Zeng D, Voigt W, Chen Q, Zhou Q (2016) J Chem Eng Data 61:3406

    Article  CAS  Google Scholar 

  20. Archer DG (1992) J Phys Chem Ref Data 21:793

    Article  CAS  Google Scholar 

  21. Archer DG (1999) J Phys Chem Ref Data 28:1

    Article  CAS  Google Scholar 

  22. Holmes HF, Busey RH, Simonson JM, Mesmer RE (1994) J Chem Thermodyn 26:271

    Article  CAS  Google Scholar 

  23. Timmermans J (1960) The physico-chemical constants of binary systems in concentrated solutions. Systems with metallic compounds, vol 3. Interscience Publishers, New York

    Google Scholar 

  24. Rüdorff F (1872) Ann Phys 221:599

    Article  Google Scholar 

  25. de Coppet M (1872) Ann Chim Phys 4:502

    Google Scholar 

  26. Kahlenberg L (1900) J Phys Chem 5:339

    Article  Google Scholar 

  27. Hausrath H (1902) Ann Phys 314:522

    Article  Google Scholar 

  28. Jones HC, Getman FH (1904) Z Phys Chem 49:385

    Article  Google Scholar 

  29. Hovorka F, Rodebush WH (1925) J Am Chem Soc 47:1614

    Article  CAS  Google Scholar 

  30. Brown PGM, Prue JE (1955) Proc R Soc A 232:320

    Article  CAS  Google Scholar 

  31. Klotz IM, Rosenberg RM (1972) Chemical thermodynamics, basic theory and methods, 3rd edn. Benjamin/Cunnings, Menlo Park, p 374

    Google Scholar 

  32. Gerlach GT (1887) Z Anal Chem 26:413

    Article  Google Scholar 

  33. Plake E (1935) Z Phys Chem 172A:113

    Google Scholar 

  34. Smith RP (1939) J Am Chem Soc 61:500

    Article  CAS  Google Scholar 

  35. Nielsen RF, Brown DJ (1927) J Am Chem Soc 49:2423

    Article  CAS  Google Scholar 

  36. Getman FH (1929) J Phys Chem 34:1454

    Article  Google Scholar 

  37. Wetmore FEW, Gordon AR (1937) J Chem Phys 5:60

    Article  CAS  Google Scholar 

  38. Müller F, Reuther H (1941) Z Elektrochem 47:640

    Google Scholar 

  39. Müller F, Reuther H (1941) Z Elektrochem 48:682

    Google Scholar 

  40. Plake E (1932) Z Phys Chem 162A:257

    Article  Google Scholar 

  41. Lange E, Monheim J, Robinson AL (1933) J Am Chem Soc 55:4733

    Article  CAS  Google Scholar 

  42. Birnthaler W, Lange E (1937) Z Elektrochem 43:643

    CAS  Google Scholar 

  43. Kapustinskii AF, Yakushevski BM, Drakin SI (1953) Zh Fiz Khim 27:588

    CAS  Google Scholar 

  44. Akilan C (2008) Thermodynamic and related studies of aqueous copper(II) sulfate solutions. Dissertation, Murdoch University, Perth

  45. Wagner W, Kretzschmar H-J (2008) International steam tables. Springer, Berlin

    Book  Google Scholar 

  46. Kell GS (1975) J Chem Eng Data 20:97

    Article  CAS  Google Scholar 

  47. Criss CM, Millero FJ (1999) J Solut Chem 28:849

    Article  CAS  Google Scholar 

  48. Poggiale M (1843) Ann Chim Phys 3:463

    Google Scholar 

  49. Tobler E (1855) Ann Chem Pharm 95:193

    Article  Google Scholar 

  50. Pfaff F (1856) Ann Chem Pharm 99:224

    Article  Google Scholar 

  51. Schiff H (1861) Ann Chem Pharm 118:362

    Article  Google Scholar 

  52. von Hauer KR (1868) J Prakt Chem 103:114

    Article  Google Scholar 

  53. Patrick GE, Aubert AB (1874) Trans Kansas Acad Sci 3:117

    Article  Google Scholar 

  54. Trevor JE (1891) Z Phys Chem 7:468

    Google Scholar 

  55. Etard M (1894) Ann Chim Phys 7:503

    Google Scholar 

  56. Stortenbeker W (1897) Z Phys Chem 22:60

    CAS  Google Scholar 

  57. Cohen E, Commelin JW (1903) Z Elektrochem 9:431

    Article  CAS  Google Scholar 

  58. Koppel J (1905) Z Phys Chem 52:385

    Article  Google Scholar 

  59. Cohen E, Chattaway FD, Tombrock E (1907) Z Phys Chem 60:706

    Article  Google Scholar 

  60. Schreinemakers F (1909) Z Phys Chem 69:557

    Article  Google Scholar 

  61. Schreinemakers F (1911) Proc R Neth Acad Sci 13:1163

    Google Scholar 

  62. Massink A (1916) Z Phys Chem 92:351

    Google Scholar 

  63. Foote HW (1919) J Ind Eng Chem 11:629

    Article  Google Scholar 

  64. Lattey R (1923) Über Löslichkeit von Doppelsalzen des Kupfers und des Nickels und Gleichgewichte im System CuSO4–NiSO4–(NH4)2SO4–H2O. Dissertation, TU Braunschweig

  65. Ishikawa F (1923) J Chem Soc Jpn 44:708

    CAS  Google Scholar 

  66. Agde G, Barkholt H (1926) Z Angew Chem 39:851

    Article  CAS  Google Scholar 

  67. Caven RM, Johnston W (1927) J Chem Soc:2358

  68. Flöttmann F (1928) Z Anal Chem 73:1

    Article  Google Scholar 

  69. Müller WJ, Holleck L (1929) Monatsh Chem 52:409

    Article  Google Scholar 

  70. Crockford HD, Warrick LE (1929) J Phys Chem 34:1064

    Article  Google Scholar 

  71. Crockford HD, Webster MW (1929) J Phys Chem 34:2375

    Article  Google Scholar 

  72. Crockford HD, Brawley DJ (1931) J Phys Chem 36:1594

    Article  Google Scholar 

  73. Miles FT, Menzies AWC (1937) J Am Chem Soc 59:2392

    Article  CAS  Google Scholar 

  74. Benrath A, Benrath H (1929) Z Anorg Allg Chem 179:369

    Article  CAS  Google Scholar 

  75. Tilden WA, Shenstone WA (1883) Philos Trans R Soc Lond 175:23

    Article  Google Scholar 

  76. Naumann A (1874) Ber Dtsch Chem Ges 7:1573

    Article  Google Scholar 

  77. Pareau AH (1877) Ann Phys 237:39

    Article  Google Scholar 

  78. Müller-Erzbach W (1886) Ber Dtsch Chem Ges 19:2877

    Article  Google Scholar 

  79. Frowein P (1887) Z Phys Chem 1:5

    Google Scholar 

  80. Müller-Erzbach W (1887) Ann Phys Chem 268:313

    Article  Google Scholar 

  81. Tammann G (1888) Ann Phys Chem 269:322

    Article  Google Scholar 

  82. Lescoeur MH (1890) Ann Chim Phys 21:511

    Google Scholar 

  83. Linebarger CE (1894) Z Phys Chem 13:500

    Google Scholar 

  84. Müller-Erzbach W (1896) Z Phys Chem 19:135

    Google Scholar 

  85. Bouzat MA (1903) C R Acad Sci 136:1395

    Google Scholar 

  86. Cumming AC (1909) J Chem Soc 95:1772

    Article  CAS  Google Scholar 

  87. Biltz W (1909) Z Phys Chem 67:561

    Google Scholar 

  88. Foote HW, Scholes SR (1911) J Am Chem Soc 33:1309

    Article  CAS  Google Scholar 

  89. Partington JR (1911) J Chem Soc 99:466

    Article  CAS  Google Scholar 

  90. Menzies AWC (1920) J Am Chem Soc 42:1951

    Article  CAS  Google Scholar 

  91. Wilson RE (1921) J Am Chem Soc 43:704

    Article  CAS  Google Scholar 

  92. Carpenter CD, Jette ER (1923) J Am Chem Soc 45:578

    Article  CAS  Google Scholar 

  93. Schumb WC (1923) J Am Chem Soc 45:342

    Article  CAS  Google Scholar 

  94. Roberts HM, Bury CR (1923) J Chem Soc 123:2037

    Article  CAS  Google Scholar 

  95. Partington JR, Huntingford BD (1923) J Chem Soc 123:160

    Article  CAS  Google Scholar 

  96. Logan TS (1931) J Phys Chem 36:1035

    Article  Google Scholar 

  97. Menzies AWC, Miles FT (1934) J Am Chem Soc 56:1647

    Article  CAS  Google Scholar 

  98. Sano K (1935) Sci Rep Res Tohoku A 24:719

    Google Scholar 

  99. Perpérot H, Schacherl F (1935) J Phys Radium 6:439

    Article  Google Scholar 

  100. Collins EM, Menzies AWC (1935) J Phys Chem 40:379

    Article  Google Scholar 

  101. Diesnis M (1935) Bull Soc Chim 2:1901

    CAS  Google Scholar 

  102. Balarew D (1937) Monatsh Chem 71:30

    Article  Google Scholar 

  103. Ghosh B (1945) J Indian Chem Soc 22:17

    CAS  Google Scholar 

  104. Hepburn JRI, Phillips RF (1952) J Chem Soc:2569

  105. Müller-Erzbach W (1888) Ann Phys Chem 270:1047

    Article  Google Scholar 

  106. Menzies AWC, Hitchcock CS (1930) J Phys Chem 35:1660

    Article  Google Scholar 

  107. Siggel A (1913) Z Elektrochem 19:340

    CAS  Google Scholar 

  108. Prutton CF, Maron SH, Unger ED (1935) J Am Chem Soc 57:407

    Article  CAS  Google Scholar 

  109. Steiger M (2016) Chem Geol 436:84

    Article  CAS  Google Scholar 

  110. Pawlowitsch P (1913) Z Phys Chem 84:169

    Google Scholar 

  111. Ishikawa F, Murooka T (1933) Sci Rep Tohoku Univ Ser 1(22):138

    Google Scholar 

  112. Diesnis M (1937) Ann Chim 7:5

    CAS  Google Scholar 

  113. Kirgintsev AN, Luk’yanov AV (1967) Russ J Inorg Chem 12:1070

    Google Scholar 

  114. Pollio ML, Kitic D, Resnik SL (1996) Lebensm Wiss Technol 29:376

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Federal Ministry of Education and Research (BMBF, Grant No. 03EK3019A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Steiger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höffler, F., Steiger, M. Thermodynamic properties of CuSO4(aq) from 268 K to 377 K and phase equilibria in the CuSO4–H2O system. Monatsh Chem 149, 369–379 (2018). https://doi.org/10.1007/s00706-017-2068-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2068-8

Keywords

Navigation