Skip to main content
Log in

Reduced thermal decomposition of OH-free LiNbO3 substrates even in a dry gas atmosphere

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A thermal diffusion process of Ti into a LiNbO3 substrate for optical waveguides has generally been carried out under a wet gas atmosphere in order to prevent undesirable Li outdiffusion. In this work, such thermal decomposition was confirmed to be significantly suppressed for an OH-free LiNbO3 substrate, even after a dry atmosphere annealing. No extra x-ray diffraction peak for LiNb3O8 was detected from the OH-free substrate after 10 h of annealing at 1000 °C in a dry O2. Furthermore, the surface morphology of this sample, and as well an unannealed one, were smooth. In a conventional LiNbO3 substrate containing many OH ions, subjected to a similar dry annealing, the presence of the LiNb3O8 phase and a surface coarsening were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Yurek, P. G. Suchoski, S. W. Merritt, and F. J. Leonberger, Optics & Photonics News, June, 26 (1995).

    Google Scholar 

  2. P. G. Suchoski, Jr. and G. R. Boivin, SPIE 1795 (Fiber Optic and Laser Sensor X), 38 (1992).

  3. L. McCaughan, SPIE Critical Reviews of Optical Science and Technology CR45 (Integrated Optics and Optoelectronics), 15 (1993).

  4. E. Y. B. Pun, ibid., 44 (1993).

  5. H. Nagata and J. Ichikawa, Opt. Eng. 34, 3284 (1995).

    Article  CAS  Google Scholar 

  6. D. V. Novikov, T. Gog, M. Griebenow, G. Materlik, I. Baumann, and W. Sohler, Nucl. Instrum. Methods, Phys. Res. B 95, 342 (1995).

    Article  Google Scholar 

  7. C. Huang, L. McCaughan, and D. M. Gill, J. Lightwave Technol. 12, 803 (1994).

    Article  CAS  Google Scholar 

  8. D. M. Gill, J. C. Wright, and L. McCaughan, Appl. Phys. Lett. 64, 2483 (1994).

    Article  CAS  Google Scholar 

  9. H. Suche, R. Wessel, S. Westenhofer, W. Sohler, S. Bosso, C. Carmannini, and R. Corsini, Opt. Lett. 20, 596 (1994).

    Article  Google Scholar 

  10. J. O. Tocho, F. Jaque, J G. Sole, E. Camarillo, F. Cusso, and J. E. M. Santiuste, Appl. Phys. Lett. 60, 3206 (1992).

    Article  CAS  Google Scholar 

  11. D. M. Gill, A. Judy, L. McCaughan, and J.C. Wright, Appl. Phys. Lett. 60, 1067 (1992).

    Article  CAS  Google Scholar 

  12. R. Brinkmann, W. Sohler, and H. Suche, Electron. Lett. 27, 415 (1991)

    Article  CAS  Google Scholar 

  13. S. Helmfrid, G. Arvidsson, and J. Webjorn, Electron. Lett. 27, 913 (1991).

    Article  CAS  Google Scholar 

  14. S. Miyazawa and J. Noda, Oyobutsuri 48, 867 (1979) [in Japanese].

    CAS  Google Scholar 

  15. J. L. Jackel, V. Ramaswamy, and S. P. Lyman, Appl. Phys. Lett. 38, 509 (1981).

    Article  CAS  Google Scholar 

  16. M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, and G. Celotti, J. Appl. Phys. 57, 1482 (1985).

    Article  Google Scholar 

  17. M. A. McCoy, S. A. Dregia, and W. E. Lee, J. Mater. Res. 9, 2029 (1994).

    Article  CAS  Google Scholar 

  18. M. A. McCoy, S. A. Dregia, and W. E. Lee, J. Mater. Res. 9, 2040 (1994).

    Article  CAS  Google Scholar 

  19. H. Nagata, H. Takahashi, H. Takai, and T. Kougo, Jpn. J. Appl. Phys. 34, 606 (1995).

    Article  CAS  Google Scholar 

  20. M. Minakata, T. Yonai, and K. Yamada, CLEO’95, Baltimore, Maryland, May 21–26, 1995 (Opt. Soc. Am., Washington, DC), Paper CTuD1.

    Google Scholar 

  21. R. G. Smith, D. B. Fraser, R. T. Denton, and T. C. Rich, J. Appl. Phys. 39, 4600 (1968).

    Article  CAS  Google Scholar 

  22. A. Koide, H. Shimizu, and T. Saito, Jpn. J. Appl. Phys. 33, L957 (1994).

    Article  CAS  Google Scholar 

  23. H. Nagata, J. Ichikawa, M. Kobayashi, J. Hidaka, H. Honda, K. Kiuchi, and T. Sugamata, Appl. Phys. Lett. 64, 1180 (1994).

    Article  CAS  Google Scholar 

  24. H. Nagata, J. Ichikawa, N. Mitsugi, T. Sakamoto, T. Shinriki, H. Honda, and M. Kobayashi, Supplement to Optics & Photonics News 7 (May, 1996) (Opt. Soc. Am.).

  25. A. M. Prokhorov and Yu. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, Bristol, UK, 1990).

    Google Scholar 

  26. L. Kovacs, M. Wohlecke, A. Jovanovic, K. Polgar, and S. Kapphan, J. Phys. Chem. Solids 52, 797 (1991).

    Article  CAS  Google Scholar 

  27. W. Bollmann and H-J. Stohr, Phys. Status Solidi (a) 39, 477 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagata, H., Sakamoto, T., Honda, H. et al. Reduced thermal decomposition of OH-free LiNbO3 substrates even in a dry gas atmosphere. Journal of Materials Research 11, 2085–2091 (1996). https://doi.org/10.1557/JMR.1996.0262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0262

Navigation