Skip to main content
Log in

Clean waveguides in lithium niobate thin film formed by He ion implantation

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the fabrication of channel waveguides by He ion implantation in a single-crystal LiNbO3 film bonded to a SiO2/LiNbO3 substrate. The planar waveguides were also formed under the same conditions to show the refractive index changes and the thermal annealing properties of ion-implanted LiNbO3 thin film. Using a moderate implantation energy, the formed channel waveguides were clean because He ions passed through the LiNbO3 thin film and deposited into the SiO2 layer. The optical propagation properties of channel waveguides were measured using an end-face coupling method, and the theoretical results were simultaneously calculated for comparison. The mode sizes and end-face reflectivities of channel waveguides with different widths were numerically calculated. The propagation losses were also estimated at approximately 12.2 and 14.3 dB/cm for 7 μm- and 5 μm-wide waveguides, respectively, by the Fabry–Perot method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Cai, H. Han, S. Zhang, H. Hu, K. Wang, Opt. Lett. 39, 2094 (2014)

    Article  ADS  Google Scholar 

  2. F. Sulser, G. Poberaj, M. Koechlin, P. Günter, Opt. Express 17, 20291 (2009)

    Article  ADS  Google Scholar 

  3. A. Rao, A. Patil, J. Chiles, M. Malinowski, A. Novak, K. Richardson, P. Rabiei, S. Fathpour, Opt. Express 23, 22746 (2015)

    Article  ADS  Google Scholar 

  4. L. Cai, Y. Kang, H. Hu, Opt. Express 24, 4640 (2016)

    Article  ADS  Google Scholar 

  5. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, J. Xu, Opt. Express 23, 23072 (2015)

    Article  ADS  Google Scholar 

  6. S. Diziain, R. Geiss, M. Steinert, C. Schmidt, W.-K. Chang, S. Fasold, D. Füβel, Y.-H. Chen, T. Pertsch, Opt. Mater. Express 5, 2081 (2015)

    Article  Google Scholar 

  7. C. Wang, M.J. Burek, Z. Lin, H.A. Atikian, V. Venkataraman, C. Huang, P. Stark, M. Lončar, Opt. Express 22, 30924 (2014)

    Article  ADS  Google Scholar 

  8. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, T. Pertsch, Opt. Lett. 40, 2715 (2015)

    Article  ADS  Google Scholar 

  9. H. Hu, R. Ricken, W. Sohler, Opt. Express 17, 24261 (2009)

    Article  ADS  Google Scholar 

  10. M.F. Volk, S. Suntsov, C.E. Rüter, D. Kip, Opt. Express 24, 1386 (2016)

    Article  ADS  Google Scholar 

  11. L. Cai, S. Li, H. Han, H. Hu, Opt. Express 23, 1240 (2015)

    Article  ADS  Google Scholar 

  12. F. Chen, J. App. Phys. 106, 081101 (2009)

    Article  ADS  Google Scholar 

  13. L. Zhang, P.J. Chandler, P.D. Townsend, J. App. Phys. 70, 1185 (1991)

    Article  ADS  Google Scholar 

  14. M. Bianconi, N. Argiolas, M. Bazzan, G.G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestri, C. Sada, Nucl. Instrum. Methods Phys. Res. B 249, 122 (2006)

    Article  ADS  Google Scholar 

  15. X.-L. Wang, F. Chen, L. Wang, Y. Jiao, J. Appl. Phys. 100, 056106 (2006)

    Article  ADS  Google Scholar 

  16. G.G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, R. Guzzi, J. Appl. Phys. 92, 6477 (2002)

    Article  ADS  Google Scholar 

  17. T.A. Ramadan, M. Levy, R.M. Osgood Jr., Appl. Phys. Lett. 76, 1407 (2000)

    Article  ADS  Google Scholar 

  18. P. Rabiei, P. Günter, Appl. Phys. Lett. 85, 4603 (2004)

    Article  ADS  Google Scholar 

  19. A. Boudrioua, P. Moretti, J.C. Loulergue, J. Non Cryst. Solid 187, 443 (1995)

    Article  ADS  Google Scholar 

  20. A. Boudrioua, S.O. Salem, P. Moretti, R. Kremer, J.C. Loulergue, Nucl. Instrum. Methods Phys. Res. B 147, 393 (1999)

    Article  ADS  Google Scholar 

  21. G.L. Destefanis, J.P. Gailliard, E.L. Ligeon, S. Valette, B.W. Farmery, P.D. Townsend, A. Perez, J. App. Phys. 50, 7898 (1979)

    Article  ADS  Google Scholar 

  22. P.J.F. Ziegler, Computer code SRIM (2008). http://www.srim.org. Accessed 23 Oct 2008

  23. Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, Phys. Rev. B 75, 195101 (2007)

    Article  ADS  Google Scholar 

  24. V.V. Atuchin, Nucl. Instrum. Methods Phys. Res. B 168, 498 (2000)

    Article  ADS  Google Scholar 

  25. Lumerical Solutions (2015). http://www.lumerical.com/. Accessed 10 Nov 2015

  26. R. Regener, W. Sohler, Appl. Phys. B 36, 143 (1985)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Professor Hui Hu for fruitful discussion and the Research Center of Nanoln for providing the LNOI samples. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11305096 and 11405098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Mei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SM., Jiang, YP. & Jiao, Y. Clean waveguides in lithium niobate thin film formed by He ion implantation. Appl. Phys. B 123, 220 (2017). https://doi.org/10.1007/s00340-017-6797-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6797-5

Navigation