Skip to main content
Log in

Mechanical properties and microstructural analysis of a diamond-like carbon coating on an alumina/glass composite

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigate the mechanical and microstructural properties of a diamond-like carbon coating (DLC) which is deposited by plasma enhanced chemical vapor deposition (PECVD) onto an alumina/aluminosilicate glass composite used for biomedical applications. Ball-on-ring tests yield a fracture strength that is essentially influenced by the surface topology/roughness. The surface topology of the coating is investigated by atomic force microscopy (AFM). Tribology tests and nanoindentation represent the wear resistance and hardness; these are properties that are mainly influenced by the microstructural properties of the DLC coating. This microstructure is investigated by transmission electron microscopy (TEM) and analyzed by parallel electron energy loss spectroscopy (PEELS). For the general applicability of the coated composite, the interfacial adhesion of the DLC coating on the comparably rough substrate (roughness amplitudes and wavelengths are in the micrometer range) is important. Therefore, we focus on TEM investigations that show the interface to be free of gaps and pores that we, together with a characteristic microstructure adjacent to the interface, relate to the excellent adhesion. The interlayer consists of a high density of SiC grains, part of them directly bound to the substrate, and part of them bound to other SiC grains. This interlayer is followed by an essentially different region of the coating as concerns the microstructure; this region consists of nanocrystalline diamond particles embedded in an amorphous carbon matrix. It is this heterogeneous microstructure to which we attribute (i) the good adhesion based upon the interface stabilizing SiC grains, and (ii) the high hardness and wear resistance based upon the diamond nanocrystals in the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. R. McColl, D.M. Grant, S. M. Green, J.V. Wood, T.L. Parker, K. G. Parker, A. A. Goruppa, and N. St. Braithwaite, Diamond Relat. Mater. 3, 83 (1993).

    Article  Google Scholar 

  2. T. L. Parker, K.G. Parker, I.R. McColl, D. M. Grant, and J.V. Wood, Diamond Relat. Mater. 3, 1120 (1994).

    Article  CAS  Google Scholar 

  3. J. Narayan, W. D. Fan, R. J. Narayan, P. Tiwari, and H.H. Stadelmaier, Mater. Sci. Eng. B25, 5 (1995).

    Google Scholar 

  4. E. Mitura, S. Mitura, P. Niedzielski, Z. Has, R. Wolowiec, A. Jakubowski, S. Szmidt, A. Sokolowska, P. Louda, J. Marciniak, and B. Koczy, Diamond Relat. Mater. 3, 896 (1994).

    Article  CAS  Google Scholar 

  5. H. Hornberger and P.M. Marquis, Glastech. Ber. Glass Sci. Technol. 68, 1 (1995).

    Google Scholar 

  6. H. Hornberger, S. Christiansen, P. M. Marquis, and H. P. Strunk, J. Mater. Res. 11, 855 (1996).

    Article  CAS  Google Scholar 

  7. I. J. McColm and N. J. Clark, in Forming, Shaping and Working of High Performance Ceramics (Blackie and Son, Glasgow, 1988), p. 155.

    Google Scholar 

  8. J. Franks, K. Enke, and A. Richardt, Metals Mater. 6, 695 (1990).

    CAS  Google Scholar 

  9. D. K. Shetty, A. Rosenfield, P. McGuire, G. K. Bansal, and W. H. Duckworth, Ceram. Bull. 59, 1193 (1980).

    Google Scholar 

  10. C. Chatfield, in Statistics for Technology (Chapman and Hall, London, 1978), pp. 81–86.

    Book  Google Scholar 

  11. C. W. Wegst, in Stahlschlüssel, Verlag Stahlschlüssel Wegst GMBH, 127 (1995).

  12. E. G. Acheson, Brit. Pat. 17, 911 (1982).

    Google Scholar 

  13. S. D. Berger and D. R. McKenzie, Philos. Mag. Lett. 57, 285 (1988).

    Article  CAS  Google Scholar 

  14. J. R. Rice and R. Thompson, Philos. Mag. 29, 73 (1974).

    Article  CAS  Google Scholar 

  15. W. H. Yang and D. J. Srolovitz, Phys. Rev. Lett. 71, 1593 (1993).

    Article  CAS  Google Scholar 

  16. C. H. Chiu and H. Gao, in Mechanisms of Thin Film Evolution, edited by S. M. Yalisove, C. V. Thompson, and D. J. Eaglesham (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 369.

  17. A. S. Tetelman and A. J. McEvily, Fracture of Structural Materials (John Wiley and Sons, Inc., New York, London, Sydney, 1967).

    Google Scholar 

  18. L. Schaefer, A. Blum, M. Sattler, and C. P. Klages, in Applications of Diamond Films and Rel. Mat.: Third International Conference, edited by A. Feldman, Y. Tzeng, W. A. Yarbrough, M. Yoshikawa, and M. Murakawa (1995).

  19. P. Pirouz, J.W. Yang, Ultramicroscopy 51, 189 (1993).

    Article  CAS  Google Scholar 

  20. J. VanLanduyt, G. Van Tendeloo, and S. Amelinckx, Progress in Crystal Growth and Characterization 7, 343 (1983).

    Article  Google Scholar 

  21. J. W. Edington, Practical Electron Microscopy in Materials Science (VNR Company, Eindhoven, 1976), p. 89.

    Google Scholar 

  22. Y. M. Tairov, V. F. Tsvetkov, and H. Krishna, Progress in Crystal Growth and Characterization 7, 111 (1983).

    Article  CAS  Google Scholar 

  23. N. W. Jepps, T. F. Page, and H. Krishna, Progress in Crystal Growth and Characterization 7, 259 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, S., Albrecht, M., Strunk, H.P. et al. Mechanical properties and microstructural analysis of a diamond-like carbon coating on an alumina/glass composite. Journal of Materials Research 11, 1934–1942 (1996). https://doi.org/10.1557/JMR.1996.0244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0244

Navigation