Skip to main content
Log in

A new method for fabricating high performance polymeric thin films by chemical vapor polymerization

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A vacuum deposition method is presented in which copolymer films are grown from a vinylic monomer chosen for desirable properties and paraxylylene. The concentration of paraxylylene in the final copolymer can be negligibly small if proper deposition conditions, presented here for the first time, are employed. Films of paraxylylene with N-phenyl maleimide deposited at 40 °C, for example, showed thermal stability and FTIR spectra nearly identical with homopolymers of poly(N-phenyl maleimide). Different rate-limiting steps are proposed to explain film composition; paraxylylene is under surface reaction control, while the comonomer obeys mass flow control. This results in a deposition environment extremely rich in comonomer. Growth rates and compositions were consistent with predictions. The initiation reaction did not appear different from homopolymerization of paraxylylene. The general method presented here allows fabrication of vapor-deposited thin films with properties limited primarily by the comonomer employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Corley, H. Haas, M. Kane, and D. Livington, J. Polym. Sci. XIII, 137 (1954).

    Article  Google Scholar 

  2. F. Cariou, D. Valley, and W. Loeb, IEEE Proc. Elec. Pack. Conf. PMP-1, s-54 (1965).

    Google Scholar 

  3. W. Gorham, J. Polym. Sci. A-1 4, 3027 (1966).

    Article  CAS  Google Scholar 

  4. W. Gorham, Adv. Chemistry Series 91, 643 (1969).

    Article  Google Scholar 

  5. M. Spivak and G. Ferrante, J. Electrochem. Soc.: Electrochem. Techn., 1592 (1969).

    Google Scholar 

  6. M. Swarc, Polym. Eng. Sci. 16 (7) 473 (1976).

    Article  Google Scholar 

  7. W. Beach and T. Austin, 2nd Int. SAMPE Electronics Conf., 25 (1988).

  8. C. Lang, G. Yang, J. Moore, and T. Lu, in Low-Dielectric Constant Materials—Synthesis and Applications in Microelectronics, edited by T-M. Lu, S. P. Murarka, T.S. Kuan, and C.H. Ting (Mater. Res. Soc. Symp. Proc. 381, Pittsburgh, PA, 1995), pp. 45–49.

  9. W. Gorham and W. Niegisch, Encyclo. Polym. Sci. 15, 98 (1971).

    CAS  Google Scholar 

  10. W. Beach, C. Lee, D. Bassett, T. Austin, and R. Olson, Encyclo. Polym. Sci. Tech. 17, 990 (1988).

    Google Scholar 

  11. L. Aleksandrova and R. Vera-Graziano, in Polymeric Materials Encyclopedia: Synthesis, Properties and Applications (CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  12. W. Beach, Macromolecules 11 (1), 72 (1978).

    Article  CAS  Google Scholar 

  13. J. Gaynor, S. Desu, and J. Senkevich, Macromolecules 28, 7343–7348 (1995).

    Article  CAS  Google Scholar 

  14. V. Sochilin, K. Mailyan, L. Aleksandrova, A. Nikolaev, A. Pebalk, and I. Kardash, Dokl. Akad. Nauk SSSR 319 (1), 173–176 (1991).

    CAS  Google Scholar 

  15. J. Gaynor and S. Desu, J. Mater. Res. 9, 3125–3130 (1994).

    Article  CAS  Google Scholar 

  16. J. Gaynor and S. Desu, J. Mater. Res. 11, 236–242 (1996).

    Article  CAS  Google Scholar 

  17. F. Mayo and F. Lewis, J. Am. Chem. Soc. 66, 1594 (1944).

    Article  CAS  Google Scholar 

  18. W. Beach, Proc. 3rd Int. SAMPE Electronics Conf., 78 (1989).

    Google Scholar 

  19. S. Kubo, Ph.D. Thesis, Rensselaer Polytechnic Institute (1972).

  20. M. Ohring, The Materials Science of Thin Films (Academic Press, New York, 1992).

    Google Scholar 

  21. M. Gazicki, G. Surendran, W. James, and H. Yasuda, J. Polym. Sci., Polym. Chem. 23, 2255–2277 (1985).

    Article  CAS  Google Scholar 

  22. M. Gazicki, G. Surendran, W. James, and H. Yasuda, J. Polym. Sci., Polym. Chem. 24, 215–240 (1986).

    Article  CAS  Google Scholar 

  23. S. Kubo and B. Wunderlich, J. Appl. Phys. 42, (12), 4558–4565 (1971).

    Article  CAS  Google Scholar 

  24. S. Kubo and B. Wunderlich, J. Polym. Sci.: Polym. Phys. 10, 1949–1966 (1972).

    CAS  Google Scholar 

  25. A. Sharma, J. Polym. Sci. A, Polym. Chem. 26, 2953–2971 (1988).

    Article  CAS  Google Scholar 

  26. G. Trieber, K. Böhlke, A. Weitz, and B. Wunderlich, J. Polym. Sci., Polym. Phys. 11, 1111–1116 (1973).

    Article  Google Scholar 

  27. H. Yasuda, Y. Yeh, and S. Fusselman, Pure Appl. Chem. 62 (9), 1689–1698 (1990).

    Article  CAS  Google Scholar 

  28. L. Aleksandrova, L. Shundina, G. Gerasimov, and I. Kardash, Polym. Sci. 35 (4), 361–366 (1993).

    CAS  Google Scholar 

  29. A. Christopher, A. Fritzsche, and A. Wright, Photochemistry of Macromolecules (Plenum Press, New York, 1970), p. 117.

    Book  Google Scholar 

  30. M. Mathur and N. Weir, J. Mol. Struct. 15, 459–463 (1973).

    Article  CAS  Google Scholar 

  31. H. Jellinek and S. Lipovac, J. Polym. Sci. A-1 8, 2517–2534 (1970).

    Article  CAS  Google Scholar 

  32. B. Joesten, J. Appl. Polym. Sci. 18 (2), 439 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaynor, J.F., Jay Senkevich, J. & Desu, S.B. A new method for fabricating high performance polymeric thin films by chemical vapor polymerization. Journal of Materials Research 11, 1842–1850 (1996). https://doi.org/10.1557/JMR.1996.0233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0233

Navigation