Skip to main content
Log in

Ion beam amorphization of muscovite mica

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure of a muscovite mica exposed to a rare gas ion beam has been studied by transmission electron microscopy. The investigation of damage without implantation was carried out using argon and helium ions of sufficient energy to traverse the 100–150 nm mica specimens. For 340 keV Ar++ irradiation, amorphization of mica occurred at a fluence as low as 3.5 × 1014 ions · cm−2, which corresponds to 0.29 dpa. Muscovite can be amorphized using 80 keV helium ions, but this requires a much higher fluence and damage production of 4.6 × 10−6 ions · cm−2 and 0.60 dpa, respectively. Since helium irradiation results principally in ionization energy loss, it indicates that amorphization of muscovite results mainly from nuclear interactions. Complete amorphization of muscovite mica is found to take place for all ions at approximately the same amount of nuclear energy transfer to energetic primary knock-on atoms, assuming a recoil energy greater than 500 eV. This suggests that amorphization occurs directly in dense displacement cascades. A significant amount of helium, 100 ppm, can be implanted into muscovite mica without destroying the crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Cartz, F. G. Karioris, and X. Yang, Inst. Phys. Conf. Series 111, 507 (1990).

    Google Scholar 

  2. G. Hishmeh, L. Cartz, F. G. Karioris, C. Templier, J. Chaumont, and C. Clerc, J. Am. Ceram. Soc. 76, 343 (1993).

    Article  CAS  Google Scholar 

  3. Q. Xu, M. S. Thesis, Marquette University, Milwaukee, WI (1992).

  4. G. A. Hismeh, L. Cartz, F. Desage, C. Templier, J.C. Desoyer, and R. C. Birtcher, J. Mater. Res. 9, 3095 (1994).

    Article  Google Scholar 

  5. C. Templier, in Fundamental Aspects of Inert Gases in Solids, edited by S. E. Donnelly and J.H. Evans (Plenum Press, New York, 1991), pp. 117–132.

    Chapter  Google Scholar 

  6. H. H. Andersen, J. Bohr, A. Johansen, E. Johnson, L. Sarholt-Kristensen, and V. Surganov, Phys. Rev. Lett. 59, 1589 (1987).

    Article  CAS  Google Scholar 

  7. R. C. Birtcher and A. S. Liu, J. Nucl. Mater. 165, 101 (1989).

    Article  CAS  Google Scholar 

  8. M. G. Norton, E. L. Fleisher, W. Hertl, C. B. Carter, J. W. Mayer, and E. Johnson, Phys. Rev. B 43, 9291 (1991).

    Article  CAS  Google Scholar 

  9. E. L. Fleischer, M. G. Norton, M. A. Zaleski, W. Hertl, C. B. Carter, and J. W. Mayer, J. Mater. Res. 6, 1905 (1991).

    Article  CAS  Google Scholar 

  10. R. C. Ewing, W. J. Weber, and F. W. Clinard, Jr., Prog. Nucl. Energy 29 (2), 63 (1995).

    Article  CAS  Google Scholar 

  11. R. C. Ewing and L.M. Wang, Nucl. Instrum. Methods B65, 319 (1992).

    Article  CAS  Google Scholar 

  12. L. M. Wang and R.C. Ewing, Nucl. Instrum. Methods B65, 324 (1992).

    Article  CAS  Google Scholar 

  13. W. J. Weber, R. C. Ewing, and L. M. Wang, J. Mater. Res. 9, 688 (1994).

    Article  CAS  Google Scholar 

  14. L. M. Wang and R. C. Ewing, in Phase Formation and Mollification by Beam-Solid Interactions, edited by G. Was, L. E. Rehn, and D. M. Follstaedt (Mater. Res. Soc. Symp. Proc. 235, Pittsburgh, PA, 1992), p. 333.

  15. J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods, Phys. Rev. 174, 257 (1980).

    Article  CAS  Google Scholar 

  16. R. K. Eby, R. C. Ewing, and R. C. Birtcher, J. Mater. Res. 7, 3080 (1992).

    Article  CAS  Google Scholar 

  17. C. Jaouen, Physic Thesis, Poitiers, France.

  18. L. M. Wang and R. C. Birtcher, Philos. Mag. A 64, 1209 (1991).

    Article  CAS  Google Scholar 

  19. R. C. Birtcher, C. W. Allen, L. E. Rehn, and G. L. Hofman, J. Nucl. Mater. 152, 73 (1988).

    Article  CAS  Google Scholar 

  20. A. Perez and P. Thevenard, in Ion Beam Modification of Insulators, edited by P. Mazzoldi and G. W. Arnold (Elsevier, New York, 1987), p. 156.

    Google Scholar 

  21. F. Thibaudau, J. Cousty, E. Balanzat, and S. Bouffard, Phys. Rev. Lett. 67, 1582 (1991).

    Article  CAS  Google Scholar 

  22. V. Chailley, E. Dooryhée, S. Bouffard, E. Balanzat, and M. Levallois, Nucl. Instrum. Methods, Phys. Res. B 91, 162 (1994).

    Article  CAS  Google Scholar 

  23. M. Toulemonde, S. Bouffard, and F. Studer, Nucl. Instrum. Methods, Phys. Res. B 91, 108 (1994).

    Article  CAS  Google Scholar 

  24. L. M. Wang, M. L. Miller, and R. C. Ewing, Ultramicroscopy 51, 339 (1993).

    Article  CAS  Google Scholar 

  25. H. M. Naguib and R. Kelly, Rad. Effects 25, 1 (1975).

    Article  CAS  Google Scholar 

  26. H. Wiedersich, J. Nucl. Mater. 206, 121 (1993).

    Article  CAS  Google Scholar 

  27. R. C. Birtcher, in Beam-Solid Interactions: Fundamentals and Applications, edited by M. Nastasi, L. R. Harriott, N. Herbots, and R. S. Averback (Mater. Res. Soc. Symp. Proc. 279, Pittsburgh, PA, 1993), p. 129.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Templier, C., Desage, F., Desoyer, J.C. et al. Ion beam amorphization of muscovite mica. Journal of Materials Research 11, 1819–1824 (1996). https://doi.org/10.1557/JMR.1996.0229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0229

Navigation