Skip to main content
Log in

Origin of dislocation loops in α-silicon nitride

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dislocation loops and stacking fault formation mechanism in α–Si3N4 have been studied by annealing α–Si3N4 powders at 1500 °C and 1750 °C. Thermally activated vacancies and the structural vacancies generated with replacement of nitrogen by oxygen have been tentatively suggested to be two sources of vacancies in α–Si3N4. From the point of view of mechanism, incorporation of these vacancies is believed to lie at the building-up stage of α–Si3N4 lattice. As a result of the vacancies agglomeration, dislocation loops and stacking faults seem to be a distinctively structural feature of α–Si3N4 fabricated by different routes [chemical vapor deposition (CVD), silicon nitridation, silica carbothermal reduction, and imide decomposition]. A general discussion has been extended to the historical controversy over the oxygen and vacancy stabilization of α–Si3N4 lattice arisen from the fact that the observed unit cell dimension of α–Si3N4 has a wide variation, and also to some related phenomena in processing of Si3N4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Jack, in Progress in Nitrogen Ceramics, edited by F. L. Riley (Martinus Nijhoff, The Hague, The Netherlands, 1983), pp. 45–60.

    Chapter  Google Scholar 

  2. M. N. Rahaman, Y. Boiteux, and L. C. Dejonghe, Bull. Am. Ceram. Soc. 65, 1171–1176 (1986).

    CAS  Google Scholar 

  3. C. M. Wang and F. L. Riley, J. Euro. Ceram. Soc. 10, 83–93 (1995).

    Article  Google Scholar 

  4. C. M. Wang, F. L. Riley, F. Castro, and I. Iturriza, J. Am. Ceram. Soc. 76, 2136–2138 (1993).

    Article  CAS  Google Scholar 

  5. C. M. Wang, J. Am. Ceram. Soc. 78, 3393–3396 (1995).

    Article  CAS  Google Scholar 

  6. K. L. Moore, Pro. Electron Microsc. Soc. America 49, 936–937 (1991).

    Article  Google Scholar 

  7. H. Suematsu, J. J. Petrovic, and T. E. Mitchell, Pro. Electron Microsc. Soc. America 50, 342–344 (1992).

    Article  Google Scholar 

  8. R. M. J. Cotterill, M. Doyama, J.J. Jackson, and M. Meshii, Lattice Defects in Quenched Metals (Academic Press, New York, 1965).

    Google Scholar 

  9. A. G. Evans and J. V. Sharp, J. Mater. Sci. 6, 1292–1302 (1971).

    Article  CAS  Google Scholar 

  10. S. Hampshire, H. K. Park, D. P. Thompson, and K. H. Jack, Nature (London) 274, 880–882 (1978).

    Article  CAS  Google Scholar 

  11. S. Wilde, P. Grieveson, and K. H. Jack, Special Ceramics 5, 385–395 (1972).

    Google Scholar 

  12. W. Jäger, M. Rühle, and M. Wilkens, Phys. Status Solidi A 31, 525–533 (1975).

    Article  Google Scholar 

  13. X. Q. Pan, unpublished work.

  14. K. Kato, Z. Inoue, K. Kijima, I. Kawada, H. Tanaka, and T. Yamane, J. Am. Ceram. Soc. 58, 90–91 (1975).

    Article  CAS  Google Scholar 

  15. S. L. Hwang and I.W. Chen, J. Am. Ceram. Soc. 77, 1711–1718 (1994).

    Article  CAS  Google Scholar 

  16. F. Wakai, Y. Kodama, S. Sakaguti, N. Murayama, K. Izaki, and N. Niihara, Nature (London) 344, 421–423 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, CM., Pan, XQ. & Rühle, M. Origin of dislocation loops in α-silicon nitride. Journal of Materials Research 11, 1725–1732 (1996). https://doi.org/10.1557/JMR.1996.0216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0216

Navigation