Skip to main content
Log in

Synthesis, morphology, and formation mechanism of mullite particles produced by ultrasonic spray pyrolysis

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Submicrometer spherical particles of mullite powder were synthesized by ultrasonic spray pyrolysis of emulsion and solutions, using tetra-ethyl-orthosilicate (TEOS) or silicic-acid and Al(NO3)3 · 9H2O as initial compounds. Crystallization of mullite phase was determined by differential thermal (DT), thermogravimetric (TG), infrared (IR), and x-ray analyses. The synthesis of mullite from TEOS emulsion occurs by crystallization of γ–Al2O3 (or Al, Si-spinel) from the amorphous phase and its subsequent reaction with amorphous SiO2, as well as by crystallization of pseudotetragonal mullite below 1000 °C and its subsequent phase transformation into orthorhombic mullite. In the powders produced from silicic acid solutions, synthesis of mullite occurs only by crystallization of γ–Al2O3 between 900 and 1000 °C and its further reaction with amorphous SiO2 between 1100 and 1200 °C. Particle formation mechanism depended directly on the initial emulsion or solution preparation, i.e., on the phase separation in the emulsion and on the silicic-acid crosslinking conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Aksay, D. M. Dabbs and M. Sarikaya, J. Am. Ceram. Soc. 74, 2343 (1991).

    Article  CAS  Google Scholar 

  2. S. Sōmiya and Y. Hirata, Ceram. Bull. 70, 1624 (1991).

    Google Scholar 

  3. R. R. Tumala, J. Am. Ceram. Soc. 74, 895 (1991).

    Article  Google Scholar 

  4. S. Zhang and G. L. Messing, in Ceramic Transaction, Ceramic Powder Science III, edited by G. L. Messing, S. Hirano, and H. Hausner (American Ceramic Society, Westerville, OH, 1991), Vol. 12, pp. 49–57.

  5. K. Okada, N. Otsuka, and S. Sōmiya, Ceram. Bull. 70, 1633 (1991).

    CAS  Google Scholar 

  6. Y. Kanno and T. Suzuki, J. Mater. Sci. 23, 3067 (1988).

    Article  CAS  Google Scholar 

  7. H. Anderson, T. T. Kodas, and D. M. Smith, Ceram. Bull. 68, 996 (1989).

    CAS  Google Scholar 

  8. O. Milošević, B. Jordović, and D. Uskoković, Mater. Lett. 19, 165 (1994).

    Article  Google Scholar 

  9. G. V. Jayanthi, S.C. Zhang, and G. L. Messing, Aerosol. Sci. Technol. 19, 478 (1993).

    Article  CAS  Google Scholar 

  10. G. L. Messing, S. C. Zhang, and G.V. Jayanthi, J. Am. Ceram. Soc. 76, 2707 (1993).

    Article  CAS  Google Scholar 

  11. O. Milošević and D. Uskoković, Mater. Sci. Eng. A168, 249 (1993).

    Article  Google Scholar 

  12. Dj. Janaćković, V. Jokanović, Lj. Živković, Lj.Kostić-Gvozdenović and D. Uskoković, in Proceedings of World Ceramic Congress—Eight Cimtec, Ceramics: Charting the Future, Advances in Science and Technology, edited by P. Vincenzini (Techna, Faenca, 1995), pp. 1229–1236.

    Google Scholar 

  13. S. Kanzaki and H. Tabata, J. Am. Ceram. Soc. 68, C-6 (1985).

    Article  Google Scholar 

  14. K. A. Moore, J. Cesarano III, D. M. Smith, and T.T. Kodas, J. Am. Ceram Soc. 75, 213 (1992).

    Article  CAS  Google Scholar 

  15. M. Ocana, J. Sanz, T. Gonzales-Carreno, and S. Serna, J. Am. Ceram. Soc. 76, 2081 (1993).

    Article  CAS  Google Scholar 

  16. J. Ossaka, Nature (London) 191, 1000 (1961).

    Article  CAS  Google Scholar 

  17. H. Schneider and T. Rymon-Lipinski, J. Am. Ceram. Soc. 71, C-162 (1988).

    Google Scholar 

  18. O. Sakurai, N. Mizutani, and M. Kato, Nippon Seramikkusu Kyokai Gakujutu Ronbunshi 96, 639 (1988).

    Article  CAS  Google Scholar 

  19. R. J. Lang, J. Acoust. Soc. Am. 34, 6 (1962).

    Article  Google Scholar 

  20. R. K. Iler, Colloidal Silica, Surface and Colloid Science, edited by E. Matijević (John Wiley and Sons, New York, 1973), Vol. 6, pp. 9–12.

  21. K. Okada and N. Otsuka, J. Am. Ceram. Soc. 69, 652 (1986).

    Article  CAS  Google Scholar 

  22. J. Sanz, I. Sobrados, A. L. Cavalieri, P. Pena, S. de Aza, and S. Moya, J. Am. Ceram. Soc. 74, 2398 (1991).

    Article  CAS  Google Scholar 

  23. D. W. Hoffman, R. Roy, and S. Komarneni, J. Am. Ceram. Soc. 67, 468 (1984).

    Article  CAS  Google Scholar 

  24. D. X. Li and W. J. Thomson, J. Am. Ceram. Soc. 74, 574 (1991).

    Article  CAS  Google Scholar 

  25. J. A. Pask, X. W. Zhang, A. P. Tomsia, and B. E. Yoldas, J. Am. Ceram. Soc. 70, 704 (1987).

    Article  CAS  Google Scholar 

  26. C. S. Hsi, H. Y. Lu, and F. S. Yen, J. Am. Ceram. Soc. 72, 2208 (1989).

    Article  CAS  Google Scholar 

  27. Y. Hirata, K. Sakeda, Y. Matsushita, and Y. Ishihara, J. Am. Ceram. Soc. 72, 995 (1989).

    Article  CAS  Google Scholar 

  28. H. J. Percival, J. F. Duncan, and P. K. Foster, J. Am. Ceram. Soc. 57, 57 (1974).

    Article  CAS  Google Scholar 

  29. K. J. MacKenzie, J. Am. Ceram. Soc. 55, 68 (1972).

    Article  CAS  Google Scholar 

  30. M. Ocana, V. Fornes, and C. J. Serna, Ceram. Int. 18, 99 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janaćković, D., Jokanović, V., Kostić-Gvozdenović, L. et al. Synthesis, morphology, and formation mechanism of mullite particles produced by ultrasonic spray pyrolysis. Journal of Materials Research 11, 1706–1716 (1996). https://doi.org/10.1557/JMR.1996.0214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0214

Navigation